Answer:
C2H2O4
Explanation:
To get the molecular formula, we first get the empirical formula. This can be done by dividing the percentage compositions by the atomic masses. The percentage compositions are shown as follows :
C = 26.86%
H = 2.239%
O = 100 - ( 26.86 + 2.239) = 70.901%
We then proceed to divide by their atomic masses. Atomic mass of carbon is 12 a.m.u , H = 1 a.m.u , O = 16 a.m.u
The division is as follows:
C = 26.86/12 = 2.2383
H = 2.239/1 = 2.239
O = 70.901/16 = 4.4313
We now divide each by the smallest number I.e 2.2383
C = 2.2383/2.2383 = 1
H = 2.239/2.2383 = 1
O = 4.4313/2.2383 = 1.98 = 2
Thus, the empirical formula is CHO2.
To get the molecular formula, we use the molar mass .
(CHO2)n = 90
We add the atomic masses multiplied by n.
(12 + 1 + 2(16))n = 90
45n = 90
n = 90/45 = 2.
Thus , the molecular formula is C2H2O4
Answer:
Final temperature = 83.1 °C
Explanation:
Given data:
Mass of concrete = 25 g
Specific heat capacity = 0.210 cal/g. °C
Initial temperature = 25°C
Calories gain = 305 cal
Final temperature = ?
Solution:
Q = m. c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
305 cal = 25 g ×0.210 cal/g.°C × T2 - 25°C
305 cal = 5.25cal/°C × T2 - 25°C
305 cal / 5.25cal/°C = T2 - 25°C
58.1 °C = T2 - 25°C
T2 = 58.1 °C + 25°C
T2 = 83.1 °C
Answer:
Chromosomes are structures within cells that contain a person's genes.
Explanation:
Genes are segments of deoxyribonucleic acid (DNA) that contain the code for a specific protein that functions in one or more types of cells in the body. Chromosomes are structures within cells that contain a person's genes. Genes are contained in chromosomes, which are in the cell nucleus.
In Na2O, what is the oxidation state of oxygen? In Na2O oxidation state of Na is 1+
Answer:
168°C is the melting point of your impure sample.
Explanation:
Melting point of pure camphor= T =179°C
Melting point of sample =
= ?
Depression in freezing point = 
Depression in freezing point is also given by formula:

= The freezing point depression constant
m = molality of the sample = 0.275 mol/kg
i = van't Hoff factor
We have:
= 40°C kg/mol
i = 1 ( non electrolyte)




168°C is the melting point of your impure sample.