Answer:
To prepare 50L of 32% solution you need: 11L of 30% solution, 22L of 50% solution and 17L of 10% solution.
Explanation:
A 32% solution of acid means 32L of acid per 100L of solution. As the chemist wants to make a solution using twice as much of the 50% solution as of the 30% solution it is possible to write:
2x*50% + x*30% + y*10% = 50L*32%
<em>130x + 10y = 1600 </em><em>(1)</em>
<em>-Where x are volume of 30% solution, 2x volume of 50% solution and y volume of 10% solution-</em>
Also, it is possible to write a formula using the total volume (50L), thus:
<em>2x + x +y = 50L</em>
<em>3x + y = 50L </em><em>(2)</em>
If you replace (2) in (1):
130x + 10(50-3x) = 1600
100x + 500 = 1600
100x = 1100
<em>x = 11L -Volume of 30% solution-</em>
2x = 22L -Volume of 50% solution-
50L - 22L - 11L = 17 L -Volume of 10% solution-
I hope it helps!
<span>To solve this we assume that the gas inside the balloon is an ideal </span>gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant volume pressure and number of moles of the gas
the ratio of T and P is equal to some constant. At another set of condition, the constant is still the same. Calculations are as follows:
T1/P1 = T2/P2
P2 = T2 x P1 / T1
P2 = 25 x 29.4 / 75
P2 = 9.8 kPa
Answer:
572 g
Explanation:
Molar mass is the mass of 1 mol of an element or compound
molar mass of Li₂SO₄ is the sum of the products of the molar masses of the elements by the number of atoms in the compound
molar masses of each element making up lithium sulphate
Li - 7 g/mol
S - 32 g/mol
O - 16 g/mol
molar mass of Li₂SO₄ - (7 g/mol x 2) + ( 32 g/mol x 1) + ( 16 g/mol x 4 )
molar mass = 110 g/mol
mass of 1 mol of Li₂SO₄ is 110 g
therefore mass of 5.2 mol of Li₂SO₄ is - 110 g/mol x 5.2 mol = 572 g
mass is 572 g
<span>If you look at the chlorine box, with the symbol Cl, you see the atomic mass is equal to 35.453 atomic mass units. This is the weighted average mass of chlorine, including its isotopes, as found in nature. This also means that one mole of chlorine atoms has a mass of 35.453 grams.</span>