Answer:
Area = 64π
Area \: = \pi {r}^{2}Area=πr
2
64 \: \pi \: = \pi {r}^{2}64π=πr
2
{r}^{2} = \dfrac{64\pi}{\pi}r
2
=
π
64π
{r}^{2} = 64r
2
=64
r \: = \: \sqrt{64} = 8r=
64
=8
Radius = 8 units
Finding the Diameter -
Diameter = Radius x 2 = 8 x 2 = 16 .
\bold{Diameter \: is \: 16 \: units}Diameteris16units
It’s 4,2 the and the other on PQRS
Answer:
Required largest volume is 0.407114 unit.
Step-by-step explanation:
Given surface area of a right circular cone of radious r and height h is,
and volume,

To find the largest volume if the surface area is S=8 (say), then applying Lagranges multipliers,
subject to,

We know for maximum volume
. So let
be the Lagranges multipliers be such that,



And,



Substitute (3) in (2) we get,



Substitute this value in (1) we get,



Then,

Hence largest volume,

Answer:
function
Step-by-step explanation: