Answer:
f'(x) > 0 on
and f'(x)<0 on
Step-by-step explanation:
1) To find and interval where any given function is increasing, the first derivative of its function must be greater than zero:

To find its decreasing interval :

2) Then let's find the critical point of this function:
![f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}[6-2^{2x}]=\frac{\mathrm{d} }{\mathrm{d}x}[6]-\frac{\mathrm{d}}{\mathrm{d}x}[2^{2x}]=0-[ln(2)*2^{2x}*\frac{\mathrm{d}}{\mathrm{d}x}[2x]=-ln(2)*2^{2x}*2=-ln2*2^{2x+1\Rightarrow }f'(x)=-ln(2)*2^{2x}*2\\-ln(2)*2^{2x+1}=-2x^{2x}(ln(x)+1)=0](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5B6-2%5E%7B2x%7D%5D%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B6%5D-%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B2%5E%7B2x%7D%5D%3D0-%5Bln%282%29%2A2%5E%7B2x%7D%2A%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B2x%5D%3D-ln%282%29%2A2%5E%7B2x%7D%2A2%3D-ln2%2A2%5E%7B2x%2B1%5CRightarrow%20%7Df%27%28x%29%3D-ln%282%29%2A2%5E%7B2x%7D%2A2%5C%5C-ln%282%29%2A2%5E%7B2x%2B1%7D%3D-2x%5E%7B2x%7D%28ln%28x%29%2B1%29%3D0)
2.2 Solving for x this equation, this will lead us to one critical point since x' is not defined for Real set, and x''
≈0.37 for e≈2.72

3) Finally, check it out the critical point, i.e. f'(x) >0 and below f'(x)<0.
Answer: a. (0, -300), (1, -180), (2, -60), (7, 540)
b. T=120D-300
c. $28080
Step-by-step explanation:
a. T=120D-300 ==> per week
D=0: T=120(0)-300
D=0: T=-300 ==> (0, -300)
D=1: T=120(1)-300
D=1: T=120-300
D=1: T=-180 ==> (1, -180)
D=2: T=120(2)-300
D=2: T=240-300
D=2: T=-60 ==> (2, -60)
D=7: T=120(7)-300
D=7: T=840-300
D=7: T=540 ==> (7, 540)
b. T=120D-300
c. T=120(7)-300
T=840-300
T=$540 per week
1 year = 52 weeks
540*52=$28080
Multiply 12 slices by 2/3:
12 x 2/3 = (12 x 2) /3 = 24/3 = 8
The answer is 8
The answer is 12 m.
Because you're not studying!
Next time do your mom.
Answer:
<u>S': (2, 1)</u>
<u>T': (5, 3)</u>
<u>U': (1, -4)</u>
<u>S'': (1, 3)</u>
<u>T'': (4, 5)</u>
<u>U'': (0, -2)</u>
Step-by-step explanation:
Hi!
For Reflection Across the X-Axis use this :
(x, y) -> (x, - y)
So :
S': (2, 1)
T': (5, 3)
U': (1, -4)
and then the question also asks for a translation so we follow what it gave us:
S'': (1, 3)
T'': (4, 5)
U'': (0, -2)
Please ask me any questions that you still may have!
and Have a great day! :)