Answer:
1.
Explanation:
Hello,
In this case, for the given reaction we first assign the oxidation state for each species:

Whereas the half reactions are:

Next, we exchange the transferred electrons:

Afterwards, we add them to obtain:

By adding and subtracting common terms we obtain:

Finally, by removing the oxidation states we have:

Therefore, the smallest whole-number coefficient for Sn is 1.
Regards.
Answer:
<h3>I don't know what is the answer of your question sorry never mind..</h3>
Explanation:
<h3>And please marks me as brainliest... </h3>
Answer:
-3.7771 × 10² kJ/mol
Explanation:
Let's consider the following equation.
3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)
We can calculate the standard Gibbs free energy (ΔG°) using the following expression.
ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)
where,
n: moles
ΔG°f(): standard Gibbs free energy of formation
p: products
r: reactants
ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))
ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)
ΔG° = -377.71 kJ = -3.7771 × 10² kJ
This is the standard Gibbs free energy per mole of reaction.