Answer:
V₂ = 3227.46 L
Explanation:
Given data:
Initial volume of gas = 1000 L
Initial temperature = 50°C (50 +273 = 323 K)
Initial pressure = 101.3 KPa
Final pressure = 27.5 KPa
Final temperature = 10°C (10 +273 = 283 K)
Final volume = ?
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 101.3 KPa × 1000 L × 283 K / 323 K × 27.5 KPa
V₂ = 28667900 KPa .L. K /
8882.5 K.KPa
V₂ = 3227.46 L
1) divide each percentage by the relative atomic mass of the element
2) divide all results by the smallest number
3)multiply by a whole number to get the simplest whole number ratio (if necessary)
that is to say:
Na S O
32.37÷23 22.58÷32 45.05÷16
= 1.407 = 0.7056 = 2.816 (to 4 significant figures)
the smallest number here is 0.7056 so:
1.407÷0.7056 0.7056÷0.7056 2.816÷0.7056
=1.99 approx.2 = 1 3.99 approx. 4
here there is no need to carry out step 3 as ratio obtained is already a simplest whole number ratio
so empirical formula is: Na₂SO₄
Yes. Racist it will make it harder to move almost like ooblek
C. Not all mixtures have solutes and solvents
If there were an element above fluorine, its state would be a gas. This is because fluorine is located in the non-metal section of the periodic table which can all be found as a gas at room temperature.