Answer: ΔH for the reaction is -277.4 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H(products)]-\sum [n\times \Delta H(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28products%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28reactant%29%5D)
![\Delta H=[(n_{CCl_4}\times \Delta H_{CCl_4})+(n_{HCl}\times B.E_{HCl}) ]-[(n_{CH_4}\times \Delta H_{CH_4})+n_{Cl_2}\times \Delta H_{Cl_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCCl_4%7D%5Ctimes%20%5CDelta%20H_%7BCCl_4%7D%29%2B%28n_%7BHCl%7D%5Ctimes%20B.E_%7BHCl%7D%29%20%5D-%5B%28n_%7BCH_4%7D%5Ctimes%20%5CDelta%20H_%7BCH_4%7D%29%2Bn_%7BCl_2%7D%5Ctimes%20%5CDelta%20H_%7BCl_2%7D%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times -139)+(1\times -92.31) ]-[(1\times -74.87)+(1\times 121.0]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20-139%29%2B%281%5Ctimes%20-92.31%29%20%5D-%5B%281%5Ctimes%20-74.87%29%2B%281%5Ctimes%20121.0%5D)

Therefore, the enthalpy change for this reaction is, -277.4 kJ
Answer:
the positive charges of the nuclei and the negative charges of delocalized electrons
Explanation:
The interatomic forces that joins a piece of metal atoms together are the positive charges of the nuclei and the negative charges of delocalized electrons.
This bond type is the metallic bond.
- The metallic bond is an attraction between the positive nuclei of all the closely packed atoms in the lattice.
- Also, the electron cloud jointly formed by all the atoms losing their outermost shell electrons.
Answer:
The answer is below!!
Explanation:
Ferns are plants that do not bear flowers. They do not have any seeds as well. In this regard, their mode of reproduction is through spores. Gymnosperms on the other hand have seeds, although they are not put inside an ovary.
Hope I Helped!!
:)
The concentration of [H3O⁺]=2.86 x 10⁻⁶ M
<h3>Further explanation</h3>
In general, the weak acid ionization reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
Ka's value
![\large {\boxed {\bold {Ka \: = \: \frac {[H ^ +] [A ^ -]} {[HA]}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKa%20%5C%3A%20%3D%20%5C%3A%20%5Cfrac%20%7B%5BH%20%5E%20%2B%5D%20%5BA%20%5E%20-%5D%7D%20%7B%5BHA%5D%7D%7D%7D%7D)
Reaction
HC₂H₃O₂ (aq) + H₂O (l) ⇔ (aq) + H₃O⁺ (aq) Ka = 1.8 x 10⁻⁵
![\tt Ka=\dfrac{[C_2H_3O^{2-}[H_3O^+]]}{[HC_2H_3O_2]}}\\\\1.8\times 10^{-5}=\dfrac{0.22\times [H_3O^+]}{0.035}](https://tex.z-dn.net/?f=%5Ctt%20Ka%3D%5Cdfrac%7B%5BC_2H_3O%5E%7B2-%7D%5BH_3O%5E%2B%5D%5D%7D%7B%5BHC_2H_3O_2%5D%7D%7D%5C%5C%5C%5C1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cdfrac%7B0.22%5Ctimes%20%5BH_3O%5E%2B%5D%7D%7B0.035%7D)
[H₃O⁺]=2.86 x 10⁻⁶ M
Answer:
Here's what I find.
Explanation:
Iodine-131
Iodine-131 is both a beta emitter and a gamma emitter.

About 90 % of the energy is β-radiation and 10 % is γ-radiation. Both forms are highly energetic.
The main danger is from ingestion. The iodine concentrates in thyroid gland, where the β-radiation destroys cells up to 2 mm from the tissues that absorbed it.
Both the β- and γ-radiation cause cell mutations that can later become cancerous. Small doses, such as those absorbed from the nuclear disasters in the Ukraine and Japan, can cause cancers years after the original iodine has disappeared.
Plutonium-239
Plutonium-239 is an alpha emitter.

Alpha particles cannot penetrate the skin, so external exposure isn't much of a health risk.
However, they are extremely dangerous when they are inhaled and get inside cells. They travel first to the blood or lymph system and later to the bone marrow and liver, where they cause up to 1000 times more chromosomal damage than beta or gamma rays.
It takes about 20 years for plutonium to be eliminated from the liver around 50 years for from the skeleton, so it has a long time to cause damage.