The knowledge of periodic table would be important in these three different careers such as medicine, pharmacology and engineering.
<h3>What is the importance of periodic table in following careers?</h3>
Periodic table is organised the whole elements vertically in groups and horizontally in periods with increasing atomic number.
The knowledge of arrangement of these elements serves alot of purposes in the following three different careers:
- Medicine: The element, iron is an important metal in the periodic table used in treatment of low blood levels.
- Pharmacology: The transition metals are useful in the field of pharmacology for the production of drugs. Example of such elements are chromium, manganese, cobalt, nickel, copper, and molybdenum.
- Engineering: The information of elements in the periodic table helps engineers in designing of materials used for constructions.
Therefore, the knowledge of periodic table is very important in these three different careers such as medicine, pharmacology and engineering.
Learn more about period table here:
brainly.com/question/15987580
Explanation:
Because a large amount of energy is required to break the strong inter-ionic attraction.
CaS => Ca2+ & S2-
Answer:
49.86 × 10²³ atoms of Al
Explanation:
Given data:
Number of moles of Al = 8.28 mol
Number of atoms = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 8.28 moles of Al:
1 mole = 6.022 × 10²³ atoms of Al
8.28 mol×6.022 × 10²³ atoms / 1mol
49.86 × 10²³ atoms of Al
Answer:
6.46 × 10⁻¹¹ M
Explanation:
Step 1: Given data
pH of the solution: 3.81
Step 2: Calculate the pOH of the solution
We will use the following expression.
pH + pOH = 14.00
pOH = 14.00 - pH = 14.00 - 3.81 = 10.19
Step 3: Calculate the concentration of OH⁻ ions
We will use the definition of pOH.
pOH = -log [OH⁻]
[OH⁻] = antilog -pOH = antilog -10.19 = 6.46 × 10⁻¹¹ M