Answer:
the critical flaw is subject to detection since this value of ac (16.8 mm) is greater than the 3.0 mm resolution limit.
Explanation:
This problem asks that we determine whether or not a critical flaw in a wide plate is subject to detection given the limit of the flaw detection apparatus (3.0 mm), the value of KIc (98.9 MPa m), the design stress (sy/2 in which s y = 860 MPa), and Y = 1.0.

Therefore, the critical flaw is subject to detection since this value of ac (16.8 mm) is greater than the 3.0 mm resolution limit.
Answer:
This is due to impulse
Explanation:
Impulse equal to mΔv and FΔt
You can set these equal as mΔv = FΔt
When a boxer punches a tissue, it is like punching a cushion or a pillow. The time that the hit takes is much grater than if they were to hit something solid. In addition, the change in velocity of the boxer's arm would be much greater when they hit a punching bag. In this equation, the greater the time, the less force that is needed.
M = 10.0 g, the mass of the iron sample
ΔT = 75 - 25.2 = 49.5°C, the decrease in temperature
c = 0.449 J/(g-°C), the specific heat of iron
The heat released is
Q = m*c*ΔT
= (10.0 g)*(0.449 J/(g-°C))*(49.5 C)
= 222.255 J
Answer: 222.3 J (nearest tenth)
Based on discoveries to date, the conclusion as “Planetary systems are common and planets similar in size to Earth are also common” is justified.
Answer: Option C
<u>Explanation:
</u>
Some studies show that on average, each star has at least single planet. This means that most stars, such as the Solar System, possess planets (otherwise exoplanets). It is known that small planets (more or less Earthly or slightly larger) are more common than giant planets. The mediocrity principles state that planet like Earth should be universal in the universe, while the rare earth hypothesis says they are extremely rare.
Size is often considered an important factor, because planets the size of the Earth are probably more terrestrial and can hold the earth's atmosphere. The planetary system is a series of gravitational celestial objects orbiting a star or galaxy. Generally, planetary systems describe systems with one or more planets, although such systems may also consist of bodies such as dwarf planets, asteroids and the like.
Answer:
Light does not require any medium to travel because light is a transverse wave
hope it helps