C) the moon does not have a strong magnetic field
Answer:
The final velocity of the thrower is
and the final velocity of the catcher is
.
Explanation:
Given:
The mass of the thrower,
.
The mass of the catcher,
.
The mass of the ball,
.
Initial velocity of the thrower, 
Final velocity of the ball, 
Initial velocity of the catcher, 
Consider that the final velocity of the thrower is
. From the conservation of momentum,

Consider that the final velocity of the catcher is
. From the conservation of momentum,

Thus, the final velocity of thrower is
and that for the catcher is
.
let us consider that the two charges are of opposite nature .hence they will constitute a dipole .the separation distance is given as d and magnitude of each charges is q.
the mathematical formula for potential is 
for positive charges the potential is positive and is negative for negative charges.
the formula for electric field is given as-
for positive charges,the line filed is away from it and for negative charges the filed is towards it.
we know that on equitorial line the potential is zero.hence all the points situated on the line passing through centre of the dipole and perpendicular to the dipole length is zero.
here the net electric field due to the dipole can not be zero between the two charges,but we can find the points situated on the axial line but outside of charges where the electric field is zero.
now let the two charges of same nature.let these are positively charged.
here we can not find a point between two charges and on the line joining two charges where the potential is zero.
but at the mid point of the line joining two charges the filed is zero.
Answer:
motion energy
Explanation:
motion wnergy is the sum of potential and kinetic energy
86.4×10^6 joule is energy does one house use during each 24 hr day.
20 MJ of light energy
Consumption of electricity is 1 kW.
The energy consumption lasts for 24 hours.
energy=power×time
energy=10^3×24×3600
energy=86.4×10^6 joule
Energy in physics is the ability to perform work. Different shapes, such as potential, kinetic, thermal, electrical, chemical, radioactive, etc., may be assumed by it. Other examples of energy being transferred from one body to another include heat and work. Energy is always distributed after it has been transported in accordance with its type. Thus, heat transfer could result in thermal energy, whereas work could result in mechanical energy.
Motion is a trait shared by all forms of energy. For instance, if a body is moving, it has kinetic energy. Due to the object's design, which incorporates potential energy, a tensioned object, like a spring or bow, has the ability to move even when at rest.
To know more about energy visit : brainly.com/question/1932868
#SPJ4