Answer:
B
endothermic: heat taking in
exothermic: heat given out
Answer:
The answer is D, I just took the test
Explanation:
A transverse wave (electromagnetic wave) carries energy through space.
The magnetic force acting on a charged particle moving perpendicular to the field is:
= qvB
is the magnetic force, q is the particle charge, v is the particle velocity, and B is the magnetic field strength.
The centripetal force acting on a particle moving in a circular path is:
= mv²/r
is the centripetal force, m is the mass, v is the particle velocity, and r is the radius of the circular path.
If the magnetic force is acting as the centripetal force, set
equal to
and solve for B:
qvB = mv²/r
B = mv/(qr)
Given values:
m = 1.67×10⁻²⁷kg (proton mass)
v = 7.50×10⁷m/s
q = 1.60×10⁻¹⁹C (proton charge)
r = 0.800m
Plug these values in and solve for B:
B = (1.67×10⁻²⁷)(7.50×10⁷)/(1.60×10⁻¹⁹×0.800)
B = 0.979T
Answer: Option (B) is the correct answer.
Explanation:
When model B shows three dimensional shape of the molecule then it becomes easier to visualize the exact shape or geometry of the molecule as we get to know how atoms are bonded together.
Therefore, with the help of this it would be easy to know the hybridization of molecule. Basically, we will get to know the type of molecule represented by model B.
Thus, we can conclude that the statement Model B shows the three-dimensional shape of the molecule, but Model A does not represents Model B better than Model A.