<span>Place a test charge in the middle. It is 2cm away from each charge.
The electric field E= F/Q where F is the force at the point and Q is the charge causing the force in this point.
The test charge will have zero net force on it. The left 30uC charge will push it to the right and the right 30uC charge will push it to the left. The left and right force will equal each other and cancel each other out.
THIS IS A TRICK QUESTION.
THe electric field exactly midway between them = 0/Q = 0.
But if the point moves even slightly you need the following formula
F= (1/4Piε)(Q1Q2/D^2)
Assume your test charge is positive and make sure you remember two positive charges repel, two unlike charges attract. Draw the forces on the test charge out as vectors and find the magnetude of the force, then divide by the total charge to to find the electric field strength:)</span>
the electric force decreases because the distance has an indirect relationship to the force
Explanation:
The electric force between two objects is given by
where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the distance between the two objects
As we can see from the formula, the magnitude of the force is inversely proportional to the square of the distance: so, when the distance between the object increases, the magnitude of the force decreases.
Answer:
Its not A..
Explanation:
I chose A - was incorrect
Here's a quick way to find out. Pick up your glasses, bifocals work best, and find the focal length with a flashlight against a book. If I remember right, the object should be magnified and upside down. So, A.