Answer:
1. 20.54m/s
2. 1.52s
Explanation:
QUESTION 1:
The speed the stone impact the ground is the final speed/velocity, which can be calculated using the formula:
v² = u² + 2as
Where;
v = final velocity (m/s)
u = initial velocity (m/s)
a = acceleration due to gravity (m/s²)
s = distance (m)
From the provided information, u = 5.65m/s, v = ?, s = 19.9m, a = 9.8m/s²
v² = 5.65² + 2 (9.8 × 19.9)
v² = 31.9225 + 2 (195.02)
v² = 31.9225 + 390.04
v² = 421.9625
v = √421.9625
v = 20.5417
v = 20.54m/s
QUESTION 2:
Using v = u + at
Where v = final velocity (m/s) = 20.54m/s
t = time (s)
u = initial velocity (m/s) = 5.65m/s
a = acceleration due to gravity (m/s²)
v = u + at
20.54 = 5.65 + 9.8t
20.54 - 5.65 = 9.8t
14.89 = 9.8t
t = 14.89/9.8
t = 1.519
t = 1.52s
Answer:
Some of the frequency that cannot be produced by the string includes 400Hz, 500Hz 650Hz etc...
Explanation:
Harmonics in strings are defined as the integral multiples of its fundamental frequency. This multiples are in arithmetic progression.
For example if Fo is the fundamental frequency of the string, the harmonics will be 2fo, 3fo, 4fo, 5fo... etc
If the string produces a fundamental frequency of 150Hz, some of the harmonics produced by the string will be 300Hz, 450Hz, 600Hz, 750Hz... etc
Some of the harmonics that cannot be produced include 400Hz, 500Hz 650Hz etc...
Answer: physical or mechanical weathering
Explanation:
Mechanical weathering which is also referred to as the physical weathering occurs when a rock is broken down into smaller pieces. In this case, there will be a physical change of the rock but its composition will not change.
Some examples include ice freezing and expansion of the cracks in the rock, Smstrong winds that carrycpieces of sand which then sandblast surfaces, moving water which causes abrasion etc.
Answer:
6.003×10¯⁶ N
Explanation:
We'll begin by converting 1 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
1 cm = 1 cm × 1 m / 100 cm
1 cm = 0.01 m
Finally, we shall determine the gravitational attraction. This can be obtained as follow:
Mass 1 (M₁) = 3 Kg
Mass 2 (M₂) = 3 Kg
Distance apart (r) = 0.01 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Force of attraction (F) =?
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 3 × / 0.01²
F = 6.003×10¯¹⁰ / 1×10¯⁴
F = 6.003×10¯⁶ N
Thus the gravitational attraction is 6.003×10¯⁶ N