Answer:
acid
Explanation:
Methyl acetate, also known as MeOAc, acetic acid methyl ester or methyl ethanoate, is a carboxylate ester with the formula CH3COOCH3. It is a flammable liquid with a characteristically pleasant smell reminiscent of some glues and nail polish removers.
Balanced chemical reaction: 2CH₄(g) ⇄ C₂H₂(g) + 3H₂(g).
1) In a chemical reaction, chemical equilibrium is the state in which both reactants (methane CH₄) and products (ethyne C₂H₂ and hydrogen H₂) are present in concentrations which have no further tendency to change with time.
2) At equilibrium, both the forward and reverse reactions are still occurring.
3) Reaction rates of the forward and backward reactions are equal and there are no changes in the concentrations of the reactants and products.
Answer:
Ok:
Explanation:
So grams = mols*MolarMass. Here, MolarMass (MM) = 105.99g which can be found using the periodic table. mols is given to be 0.802. We can then plug in to get that it corresponds to 85.0g.
Answer:
Rank in increasing order of effective nuclear charge:
Explanation:
This explains the meaning of effective nuclear charge, Zeff, how to determine it, and the calculations for a valence electron of each of the five given elements: F, Li, Be, B, and N.
<u>1) Effective nuclear charge definitions</u>
- While the total positive charge of the atom nucleus (Z) is equal to the number of protons, the electrons farther away from the nucleus experience an effective nuclear charge (Zeff) less than the total nuclear charge, due to the fact that electrons in between the nucleus and the outer electrons partially cancel the atraction from the nucleus.
- Such effect on on a valence electron is estimated as the atomic number less the number of electrons closer to the nucleus than the electron whose effective nuclear charge is being determined: Zeff = Z - S.
<u><em>2) Z eff for a F valence electron:</em></u>
- F's atomic number: Z = 9
- Total number of electrons: 9 (same numer of protons)
- Period: 17 (search in the periodic table or do the electron configuration)
- Number of valence electrons: 7 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 9 - 7 = 2
- Zeff = Z - S = 9 - 2 = 7
<u><em>3) Z eff for a Li valence eletron:</em></u>
- Li's atomic number: Z = 3
- Total number of electrons: 3 (same number of protons)
- Period: 1 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 1 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 3 - 1 = 2
- Z eff = Z - S = 3 - 2 = 1.
<em>4) Z eff for a Be valence eletron:</em>
- Be's atomic number: Z = 4
- Total number of electrons: 4 (same number of protons)
- Period: 2 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 2 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 4 - 2 = 2
- Z eff = Z - S = 4 - 2 = 2
<u><em>5) Z eff for a B valence eletron:</em></u>
- B's atomic number: Z = 5
- Total number of electrons: 5 (same number of protons)
- Period: 13 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 3 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 5 - 3 = 2
- Z eff = Z - S = 5 - 2 = 3
<u><em>6) Z eff for a N valence eletron:</em></u>
- N's atomic number: Z = 7
- Total number of electrons: 7 (same number of protons)
- Period: 15 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 5 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 7 - 5 = 2
- Z eff = Z - S = 7 - 2 = 5
<u><em>7) Summary (order):</em></u>
Atom Zeff for a valence electron
- <u>Conclusion</u>: the order is Li < Be < B < N < F
You have to figure out a way to write the two unknown abundances in terms of one variable.
The total abundance is 1 (or 100%). So if you say the abundance for the first one is X then the abundance for the second one has to be 1-X (where X is the decimal of the percentage so say 0.8 for 80%).
203(X) + 205(1-X) = 204.4
Then you just solve for X to get the percentage for TI-203.
And then solve for 1-X to get the percentage for TI-205.
After that the higher percentage would be the most abundant.
203x + 205 - 205x = 204.4
-2x + 205 = 204.4
-2x = -0.6
x = 0.3
1-x = 0.7
Then the TI-205 would have the highest percentage and would be the most abundant.