Answer:
Explanation if an object is in motion and more force is applied to it, the object will begin moving faster. If two objects have the same mass and a greater force is applied to one of the objects, the object which receives the greater force will change speeds more quickly.:
Answer:
The pH of the buffer solution = 8.05
Explanation:
Using the Henderson - Hasselbalch equation;
pH = pKa₂ + log ( [HPO₄²-]/[H₂PO4⁻]
where pKa₂ = -log (Ka₂) = -log ( 6.1 * 10⁻⁸) = 7.21
Concentration of OH⁻ added = 0.069 M (i.e. 0.069 mol/L)
[H₂PO4⁻] after addition of OH⁻ = 0.165 - 0.069 = 0.096 M
[HPO₄²-] after addition of OH⁻ = 0.594 + 0.069 = 0.663 M
Therefore,
pH = 7.21 + log (0.663 / 0.096)
pH = 7.21 + 0.84
pH = 8.05
Answer:
New volume of gas = 95.93 ml (Approx)
Explanation:
Given:
Old volume of gas = 86 ml
Old temperature = 30°C = 30 + 273 = 303 K
New temperature = 65°C = 65 + 273 = 338 K
Find:
New volume of gas
Computation:
V1T2 = V2T1
(86)(338) = (V2)(303)
New volume of gas = 95.93 ml (Approx)
How are the conditions at which phases are in equilibrium represented on a phase diagram?
Image result for How are the conditions at which phases are in equilibrium represented on a phase diagram?
Along the line between liquid and solid, the melting temperatures for different pressures can be found. The junction of the three curves, called the triple point, represents the unique conditions under which all three phases exist in equilibrium together. Phase diagrams are specific for each substance and mixture.