Answer:
Radiation moves out of the microwave into waves causing heat.
Explanation:
Inside your microwave oven, electrical energy is transformed into EM energy in the magnetron. When the microwave photons interact with food, food molecules are physically agitated, transforming the EM energy into kinetic energy, or energy of movement .
Hope it helped!
Answer:
Temperature of water leaving the radiator = 160°F
Explanation:
Heat released = (ṁcΔT)
Heat released = 20000 btu/hr = 5861.42 W
ṁ = mass flowrate = density × volumetric flow rate
Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³
ṁ = 1000 × 0.000126 = 0.126 kg/s
c = specific heat capacity for water = 4200 J/kg.K
H = ṁcΔT = 5861.42
ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C
And in change in temperature terms,
10°C= 18°F
11.08°C = 11.08 × 18/10 = 20°F
ΔT = T₁ - T₂
20 = 180 - T₂
T₂ = 160°F
Answer:
Answered
Explanation:
x= 0.02 m
E_p= 10.0 J
E_p= 0.5kx^2
10= 0.5k(0.02)^2
solving we get
K= 50.0 N/m
Now
E'_p= 0.5kx'^2
E'_p= 0.5×50×(0.04)^2
E'_p=40 J
b) potential energy is a scalar quantity and it only depends magnitude and not direction so it will remain same in compression and expansion both
c) 20 J = 0.5×50,000×x^2
solving
x= 0.028 m
d) k is 50.0 N/m from above calculation