Answer:
°C
Explanation:
= mass of the horseshoe = 0.35 kg
= mass of the water = 1.40 L = 1.40 kg
= mass of the iron pot = 0.45 kg
= specific heat of iron = 450 J kg⁻¹ °C⁻¹
= specific heat of water = 4186 J kg⁻¹ °C⁻¹
= initial temperature of the horseshoe = ?
= initial temperature of the water = 22 °C
= initial temperature of the iron pot = 22 °C
= final temperature = 32 °C
Using conservation of Heat




°C
Answer:
He has a speed of 16.60m/s after 35.0 meters.
Explanation:
The final velocity can be determined by means of the equations for a Uniformly Accelerated Rectilinear Motion:
(1)
The acceleration can be found by means of Newton's second law:
Where
is the net force, m is the mass and a is the acceleration.
(2)
All the forces can be easily represented in a free body diagram, as it is shown below.
Forces in the x axis:
(3)
Forces in the y axis:
(4)
Solving for the forces in the x axis:

Where
and
:


Replacing in equation (2) it is gotten:






So the acceleration for the cyclist is
, now that the acceleration is known, equation (1) can be used:

However, since he was originally at rest its initial velocity will be zero (
).



He has a speed of 16.60m/s after 35.0 meters
Answer:
1.13 x 10⁵N
Explanation:
Given parameters:
Pressure of the coin press = 3.2 x 10⁸ Pa
radius of the nickel coin = 0.0106m
Unknown:
Force of the press on coil = ?
Solution:
Our knowledge of pressure will help us solve this problem.
Pressure is defined as the force applied per unit area on a body.
Pressure = 
Force = Pressure x Area
Since the pressure is known;
Area of the coin = Area of a circle = π r²
where r is the radius of the coin;
Area of the coin = π x 0.0106² = 3.53 x 10⁻⁴m²
Force = 3.2 x 10⁸ x 3.53 x 10⁻⁴ = 1.13 x 10⁵N
Answer:
.a = 849.05 m / s²
Explanation
The centripetal acceleration is
a = v² / r
Linear and angular velocity are related
v = w r
Angular velocity and frequency are related by
w = 2π f
Let's replace
a = w² r
a = 4π² f² r
Let's reduce to the SI system
f = 2.30 rev / s (2π rad / 1 rev) = 14.45 rad / s
.r = 10.3 cm = 0.103 m
Let's calculate
a = 4π² 14.45² 0.103
.a = 849.05 m / s²