Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 
The gravitational force between the Earth and the satellite (its "weight") is inversely proportional to the distance between the centers of both objects.
On the surface, their centers are separated by 1 Earth radius.
12,000 miles above the surface, they're separated by 4 Earth radiii.
(4/1) = 4
So after the move, the satellite's weight is (1/4²) = 1/16 of its surface weight.
(321 lb) / (16) = (20 and a hair) lb
The correct choice from the given list is " <em>>20 lb "</em> .
The spring will come to rest 4.9 m below the natural length
Explanation:
The mass-spring system will come to rest when the restoring force on the spring (pulling upward) balances the weight of the mass (pulling downward). Mathematically, this can be written as

where
k is the spring constant
x is the elongation of the spring
m is the mass
g is the acceleration of gravity
In this problem, we have:
is the mass
is the acceleration of gravity
is the spring constant
Solving the equation for x,

Therefore, the spring will come to rest 4.9 m below the natural length.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly