<span>3/5t - 4 - 7/10t = -2
</span><span>3/5t - 7/10t = -2 + 4
</span><span>6/10t - 7/10t = 2
-1/10t = 2
t =2 (-10)
t = -20
answer is </span>A. -20
First, notice that:
![2\tan (\frac{x}{2})=2\cdot(\pm\sqrt[]{\frac{1-cosx}{1+\cos x})}](https://tex.z-dn.net/?f=2%5Ctan%20%28%5Cfrac%7Bx%7D%7B2%7D%29%3D2%5Ccdot%28%5Cpm%5Csqrt%5B%5D%7B%5Cfrac%7B1-cosx%7D%7B1%2B%5Ccos%20x%7D%29%7D)
And in the denominator we have:

then, we have on the original expression:
![\begin{gathered} \frac{2\tan(\frac{x}{2})}{1+\tan^2(\frac{x}{2})}=\frac{2\cdot\pm\sqrt[]{\frac{1-\cos x}{1+cosx}}}{\frac{2}{1+\cos x}}=\frac{2\cdot(\pm\sqrt[]{1-cosx})\cdot(1+\cos x)}{2\cdot(\sqrt[]{1+cosx})} \\ =(\sqrt[]{1-\cos x})\cdot(\sqrt[]{1+\cos x})=\sqrt[]{(1-\cos x)(1+\cos x)} \\ =\sqrt[]{1-\cos^2x}=\sqrt[]{\sin^2x}=\sin x \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B2%5Ctan%28%5Cfrac%7Bx%7D%7B2%7D%29%7D%7B1%2B%5Ctan%5E2%28%5Cfrac%7Bx%7D%7B2%7D%29%7D%3D%5Cfrac%7B2%5Ccdot%5Cpm%5Csqrt%5B%5D%7B%5Cfrac%7B1-%5Ccos%20x%7D%7B1%2Bcosx%7D%7D%7D%7B%5Cfrac%7B2%7D%7B1%2B%5Ccos%20x%7D%7D%3D%5Cfrac%7B2%5Ccdot%28%5Cpm%5Csqrt%5B%5D%7B1-cosx%7D%29%5Ccdot%281%2B%5Ccos%20x%29%7D%7B2%5Ccdot%28%5Csqrt%5B%5D%7B1%2Bcosx%7D%29%7D%20%5C%5C%20%3D%28%5Csqrt%5B%5D%7B1-%5Ccos%20x%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B1%2B%5Ccos%20x%7D%29%3D%5Csqrt%5B%5D%7B%281-%5Ccos%20x%29%281%2B%5Ccos%20x%29%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B1-%5Ccos%5E2x%7D%3D%5Csqrt%5B%5D%7B%5Csin%5E2x%7D%3D%5Csin%20x%20%5Cend%7Bgathered%7D)
therefore, the identity equals to sinx
It's an irrational number.
You can cross off terminating and repeating decimal so you're left with a rational or irrational number. A rational number is something that can be put into fraction form and/or have repeating or terminating decimals.
So our answer would be irrational.
A=length x height. First we want to know the area of the original sheet of paper. 8.5 x 11= 93.5 inches squared. Then we take two squares with side length 2 inches. The area of each of these squares is 2 x 2, or 4 inches. Since there are two, the total area we take away is 8 inches. We subtract 8 inches from 93.5 since we took it away, and the final area of the paper is 85.5 inches^{2}
Hope this helped!