Answer:
You will find the mass of the pan and water but if the water got to its boiling temperature that mass may be a little bit off seeing as some of it may have evaporated
Answer:
trans-1,3-pentadiene is more stable than 1,4-pentadiene due to presence of a conjugated double bond.
Explanation:
Here,
H(hydrogenated pdt.) is same for both 1,4-pentadiene and 1,3-pentadiene as they both produce pentane after hydrogenation
H(diene) depends on stability of diene.
More stable a diene, lesser will be it's H(diene) value (more neagtive).
trans-1,3-pentadiene is more stable than 1,4-pentadiene due to presence of a conjugated double bond.
Hence, is higher (less negative) for trans-1,3-pentadiene
Answer:
1 gram
Explanation:
Half life = 25 years
Starting mass = 16 grams
Time = 100 years
Number of half lives = Time / Duration of Half life = 100 / 25 = 4
After first Half life;
Remaining mass = 16 / 2 = 8 g
After Second Half life;
Remaining mass = 8 / 2 = 4 g
After Third Half life;
Remaining mass = 4 / 2 = 2 g
After Fourth Half life;
Remaining mass = 2 / 2 = 1 g
Answer:
Percent yield = 89.1%
Explanation:
Based on the equation:
Cl₂ + 2KI → 2KCl + I₂
<em>1 mole of Cl₂ reacts with 2 moles of KI to produce to moles of KCl</em>
<em />
To solve this quesiton we must find the moles of each reactant in order to find the limiting reactant. With the limiting reactant we can find the moles of KCl and the mass:
<em>Moles Cl₂:</em>
8x10²⁵ molecules * (1mol / 6.022x10²³ molecules) = 133 moles
<em>Moles KI -Molar mass: 166.0028g/mol-</em>
25g * (1mol / 166.0028g) = 0.15 moles
Here, clarely, the KI is the limiting reactant
As 2 moles of KI produce 2 moles of KCl, the moles of KCl produced are 0.15 moles. The theoretical mass is:
0.15 moles * (74.5513g / mol) =
11.2g KCl
Percent yield is: Actual yield (10.0g) / Theoretical yield (11.2g) * 100
<h3>Percent yield = 89.1%</h3>