For N2(g)+3h2(g) ←→ 2nh3(g) The equilibrium system described by this equation has= 3 reactant molecule(s) and= 2 product gas molecule(s).
Answer:
Option C. The same number of energy levels.
Explanation:
From the diagram given above, element (i) belong to group 2 while element (ii) belong to group 6.
Also, both element i and ii belong to the same period (i.e period 4). This simply means that both element i and ii have the same number of energy levels.
NOTE: Elements in the same period have the same number of shells of electrons which simply means they have the same energy levels.
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.
Answer:
PCl3 + 3H2O → HPO(OH)2 + 3HCl. Phosphorus(III) chloride react with water to produce phosphorous acid and hydrogen chloride.
Explanation: