Using the chart that has been provided, we may determine water temperature. We do this by drawing a straight line form the bottom scale which has the ppm of oxygen dissolved to the middle scale which has the percentage saturation.
The line starts from 11.5 ppm on the bottom scale and goes to 90% on the middle scale. Next, we continue this line, without changing its slope, to the third scale showing temperature. We see that it crosses the temperature scale at 4°C.
The temperature of the water is 4 °C.
Molarity is the molar concentration of the solute dissolved in a volume of a solution. The molarity of the solution prepared by dissolving barium chloride will be 0.085 M.
<h3>What is molarity?</h3>
Molarity is the ratio of the moles of the solute to that of the volume of the solution in Liters. It can be given as,

Here, moles of the barium chloride can be given by the mass and the molar mass and volume is given as 0.450 L.
Substituting values in the equation:

Therefore, 0.085 M barium chloride is the molar concentration.
Learn more about molarity here:
brainly.com/question/26873446
Taking into account the definition of molarity, the concentration of the solution is 0.855
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>Molarity of NaCl</h3>
In this case, you have:
- number of moles of NaCl=
1.71 moles (being 58.45 g/mole the molar mass of NaCl) - volume 2 L
Replacing in the definition of molarity:

Solving:
Molarity= 0.855 
Finally, the concentration of the solution is 0.855
.
Learn more about molarity:
<u>brainly.com/question/9324116</u>
<u>brainly.com/question/10608366</u>
<u>brainly.com/question/7429224</u>
Answer:
2.12×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This simply means that 1 mole of zirconium also 6.02×10²³ atoms.
Thus, we can obtain the number of atoms present in 0.3521 mole of zirconium as follow:
1 mole of zirconium also 6.02×10²³ atoms.
Therefore, 0.3521 mole of zirconium will contain = 0.3521 × 6.02×10²³ = 2.12×10²³ atoms.
Therefore, 0.3521 mole of zirconium contains 2.12×10²³ atoms.