So it would be the complimentary base pairing, meaning that the codon must have been:
GAC
(Which is the codon for aspartic acid)
Answer:
Nucleus
Explanation:
they originate in the nucleus
<span>1.15x10^24 molecules of hypothetical substance b
Making the assumption that each molecule in hypothetical substance a reacts to produce a single molecule of hypothetical substance b, then the number of molecules of substance b will be the number of moles of substance a multiplied by avogadro's number. So
Moles hypothetical substance a = 29.9 g / 15.7 g/mol = 1.904458599 moles
This means that we should also have 1.904458599 moles of hypothetical substance b. And to get the number of atoms, multiply by 6.0221409x10^23, so:
1.904458599 * 6.0221409x10^23 = 1.146892x10^24 molecules.
Rounding to 3 significant figures gives 1.15x10^24</span>
Answer: The hydroxide concentration of this sample is 
Explanation:
When an expression is formed by taking the product of concentration of ions raised to the power of their stoichiometric coefficients in the solution of a salt is known as ionic product.
The ionic product for water is written as:
![K_w=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=K_w%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
![7.7\times 10^{-14}=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=7.7%5Ctimes%2010%5E%7B-14%7D%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
As ![[H^+]=[OH^-]](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BOH%5E-%5D)
![2[OH^-]=7.7\times 10^{-14}](https://tex.z-dn.net/?f=2%5BOH%5E-%5D%3D7.7%5Ctimes%2010%5E%7B-14%7D)
![[OH^-]=3.85\times 10^{-7}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.85%5Ctimes%2010%5E%7B-7%7D)
Thus hydroxide concentration of this sample is 