I believe it is three (3), temperature is the measure of the average Kinetic Energy, while heat is the measure of the transfer of thermal energy.
Answer:
42 19 K→42 20 Ca+e−
Explanation:
Naturally-occurring potassium atoms have a weighted average atomic mass of 39.10 (as seen on most modern versions of the periodic table.) Each potassium atom contains 19 protons p+ and thus an average potassium atom contains about 39.10−19≈20 neutrons n0.
This particular isotope of potassium-42 contains 42 nucleons (i.e., protons and neutrons, combined;) Like other isotopes of potassium 19 out of these nucleons are protons; the rest 42−19=23 are therefore neutrons.
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
Lower fertility and longer lifespans steadily increased the potential labor force relative to the total population