Answer: Nitrogen normally exists as two-atom molecules in the form of a gas at room temperature.
Explanation:
Answer:
Eubacteria
Explanation:
The two prokaryotic kingdoms are Eubacteria and Archaea. A prokaryote is a relatively simple single-celled organism;
The answer is 1/8.
Half-life is the time required for the amount of a sample to half its value.
To calculate this, we will use the following formulas:
1.

,
where:
<span>n - a number of half-lives
</span>x - a remained fraction of a sample
2.

where:
<span>

- half-life
</span>t - <span>total time elapsed
</span><span>n - a number of half-lives
</span>
The half-life of Sr-90 is 28.8 years.
So, we know:
t = 87.3 years
<span>

= 28.8 years
We need:
n = ?
x = ?
</span>
We could first use the second equation, to calculate n:
<span>If:

,
</span>Then:

⇒

⇒

<span>⇒ n ≈ 3
</span>
Now we can use the first equation to calculate the remained amount of the sample.
<span>

</span>⇒

⇒

<span>
</span>
Answer:
1 = Q = 7315 j
2 =Q = -21937.5 j
Explanation:
Given data:
Mass of water = 50 g
Initial temperature = 20°C
Final temperature = 55°C
Energy required to change the temperature = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 j/g.°C.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 55°C - 20°C
ΔT = 35°C
Q = 50 g× 4.18 j/g.°C×35°C
Q = 7315 j
Q 2:
Given data:
Mass of metal = 100 g
Initial temperature = 1000°C
Final temperature = 25°C
Energy released = ?
Specific heat capacity = 0.225 j/g.°C
Solution:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 25°C - 1000°C
ΔT = -975°C
Now we will put the values in formula.
Q = 100 g × 0.225 j/g.°C × -975°C
Q = -21937.5 j
Negative sign show that energy is released.
For AlCl3 to be a Lewis acid, it would have to react in such a way that it accepted a lone pair from some other atom or molecule from a Lewis base.AlCl3 has an electron-deficient aluminum atom. It has only six electrons in its valence shell. It readily accepts electrons from other atoms, in an attempt to get a full valence shell of eight electrons.