Since the reaction shown in the question is an acid - base reaction in the Lewis sense; the Lewis acid here is AlCl3 while the Lewis base here is Cl^- .
<h3>What is a Lewis acid?</h3>
A Lewis acid is a substance that accepts electron pair while a Lewis base donates an electron pair.
Now consider the given reaction; AlCl3 +Cl^- ------> AlCl 4 ^-. The Lewis acid here is AlCl3 while the Lewis base here is Cl^- .
Learn more about acid - base reaction: brainly.com/question/14356798
The molar concentration will be greater than 0.01 M
.
Since more of the compound was measured out than what was calculated, you can think of the solution as being 'stronger' than what it was calculated to be. Since a 'stronger' concentration results in a number that is higher, the molarity of this solution is going to be greater than 0.01 M.
The temperature stays the same when a solid changes to a liquid because energy is required to break the forces between particles of water therefore changing the state of matter and separating the particles away from each other.
When a liquid boils, the energy is needed by the particles to escape the surface of the liquid and boil. Instead of raising the temperature, the energy goes into the particles' kinetic energy store so it has enough speed to escape the surface of the liquid.
Hydrogen because it only has one electron
Answer:

Explanation:
You don't give the reaction, but we can get by just by balancing atoms of Na.
We know we will need the partially balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
M_r: 142.04
2NaOH + … ⟶ Na₂SO₄ + …
n/mol: 0.75
1. Use the molar ratio of Na₂SO₄ to NaOH to calculate the moles of NaF.
Moles of Na₂SO₄ = 0.75 mol NaOH × (1 mol Na₂SO₄/2 mol NaOH
= 0.375 mol Na₂SO₄
2. Use the molar mass of Na₂SO₄ to calculate the mass of Na₂SO₄.
Mass of Na₂SO₄ = 0.375 mol Na₂SO₄ × (142.04 g Na₂SO₄/1 mol Na₂SO₄) = 53 g Na₂SO₄
The reaction produces
of Na₂SO₄.