Answer:
Okapi 290 kg
Llama 160 kg
Step-by-step explanation:
Let weight of each llama be ![l](https://tex.z-dn.net/?f=l)
Let weight of each okapi be ![o](https://tex.z-dn.net/?f=o)
<em>Given, combined weight of 1 okapi and 1 llama is 450, we can write:</em>
<em>
</em>
<em>Also, average weight of 3 llama is 190 more than the average weight of 1 okapi, thus we can write:</em>
<em>
</em>
Now, substituting 2nd equation into 1st equation, we can solve for weight of 1 llama:
![l+o=450\\l+(3l-190)=450\\l+3l-190=450\\4l=450+190\\4l=640\\l=\frac{640}{4}=160](https://tex.z-dn.net/?f=l%2Bo%3D450%5C%5Cl%2B%283l-190%29%3D450%5C%5Cl%2B3l-190%3D450%5C%5C4l%3D450%2B190%5C%5C4l%3D640%5C%5Cl%3D%5Cfrac%7B640%7D%7B4%7D%3D160)
Each llama weights 160 kg, now using this and plugging into 2nd equation, we get weight of 1 okapi to be:
![o=3l-190\\o=3(160)-190\\o=290](https://tex.z-dn.net/?f=o%3D3l-190%5C%5Co%3D3%28160%29-190%5C%5Co%3D290)
Each okapi weigh 290 kg