Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is
, where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and

If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation
, the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.
You are given a fixed rate of 15.9 cm³/s. You are also given with the amount of volume in 237 cm³. Through the approach of dimensional analysis, you can manipulate through operations such that the end result of the units must be in seconds. The solution is as follows:
237 cm³ * (1 s/15.9 cm³) = 14.9 seconds
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>
Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 
Answer:
When a circuit breaker regularly trips or a fuse repeatedly blows, it is a sign that you are making excessive demands on the circuit and need to move some appliances and devices to other circuits. Or, it may indicate that your house has too few circuits and is in need of a service upgrade.