1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya692 [45]
2 years ago
7

The measured value of mass M in an experiment is M = 0.743 ± 0.005kg. The error in 2M is

Physics
1 answer:
omeli [17]2 years ago
8 0

Given the measured value of mass M in the experiment the error in 2M is  ; dM

<u>Given data :</u>

Measured value of mass M = ( 0.743 ± 0.005 ) kg

<h3>The error in 2M in the measured value </h3>

The error in 2M in the measured value M = 0.743 ± 0.005 kg is dM while the error in M² will be 2dM

Hence we can conclude that the measured value of mass M in the experiment the error in 2M is  ; dM.

Learn more about error in 2M : brainly.com/question/6650225

You might be interested in
The national government would like to start a program that would give states money for flood relief. Which of the following stat
rewona [7]

Answer:

When a disaster is declared, the Federal government, led by the Federal Emergency Management Agency (FEMA), responds at the request of, and in support of, States, Tribes, Territories, and Insular Areas and local jurisdictions impacted by a disaster.

Explanation:

3 0
2 years ago
An insulated pipe carries steam at 300°C. The pipe is made of stainless steel (with k = 15 W/mK), has an inner diameter is 4 cm,
insens350 [35]

Answer:

The answers to the question are

(i) The rate of heat loss per-unit-length (W/m) from the pipe is 131.62 W

(ii) The temperature of the outer surface of the insulation is 49.89 °C

Explanation:

To solve the question, we note that the heat transferred is given by

Q = \frac{2\pi L(t_{hf} - t_{cf}) }{\frac{1}{h_{hf}r_1}+\frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} +\frac{1}{h_{cf}r_3}}

Where

t_{hf} = Temperature at the inside of the pipe = 300 °C

t_{f} = Temperature at the outside of the pipe = 20 °C

r₁ =internal  radius of pipe = 4.0 cm

r₂ = Outer radius of pipe = 4.5 cm

r₃ = Outer radius of the insulation = r₂ + 2.5 = 7.0 cm

k_A = 15 W/m·K

k_B = 0.038 W/m·K

h_{hf} = 75 W/m²·K

h_{cf} = 10 W/m²·K

Plugging in the values in the above equation where for a unit length L = 1 m, we have

Q = 131.32 W

From which we have, for the film of air at the pipe outer boundary layer

Q = \frac{t_A-t_B}{R_T} Where R_T for the air film on the pipe outer surface is given by

R_T= \frac{1}{\alpha A}

where A =area of the outside of the pipe

= \frac{1}{10*2\pi*0.07*1 } = 0.227 K/W

Therefore

131.32 W = \frac{t_A-20}{0.227} which gives

t_A = 49.89 °C

Heat transferred by radiation = q' = ε×σ×(T₁⁴ - T₂⁴)

Where ε = 0.9, σ, = 5.67×10⁻⁸W/m²·(K⁴)

T₁ = Surface temperature of the pipe = 49.89 °C and

T₂ = Temperature of the surrounding = 20.00 °C

Plugging in the values gives, q' = 0.307 W per m²

Total heat lost per unit length = 131.32 + 0.307 =131.62 W

8 0
3 years ago
Think about the mice shown below. Using the space below numbered 1, describe what is happening from figure 1 to 3.​
UkoKoshka [18]

Answer: Natural selection is taking place.

Explanation:

As you can see, the lighter colored mice are more visible than their surroundings, so the hawk picks them off one by one. the brown mice on the other hand are less visible, blending in with their surroundings, so they are successful, and pass on the genes that allow them to survive better.

- anonymous

8 0
2 years ago
Two blocks a and b ($m_a&gt;m_b$) are pushed for a certain distance along a frictionless surface. how does the magnitude of the
Yuki888 [10]

Answer:

the magnitude of the work done by the two blocks is the same.

Explanation:

The work done by block a on block b is given by:

W_a = F_a d

where Fa is the force exerted by block a on block b, and d is the distance they cover.

The work done by block b on block a is given by:

W_b = F_b d

where Fb is the force exerted by block b on block a, and d is still the distance they cover.

For Newton's third law, the force exerted by block a on block b is equal to the force exerted by block b on block a, therefore

F_a = F_b

and so

W_a=W_b

3 0
3 years ago
The mass of the uniform cantilever is 1100 kg. Determine the force on the beam at A. Determine the force on the beam at B. Use C
Mashcka [7]

Answer:

Force A=-−2,697.75 N

Force B=13, 488.75 N

Explanation:

Taking moments at point A, the sum of clockwise and anticlockwise moments equal to zero.

25 mg-20Fb=0

25*1100g=20Fb

Fb=25*1100g/20=1375g

Taking g as 9.81 then Fb=1375*9.81=13,488.75 N

The sum of upward and downward forces are same hence Fa=1100g-1375g=-275g

-275*9.81=−2,697.75. Therefore, force A pulls downwards

Note that the centre of gravity is taken to be half the whole length hence half of 50 is 25 m because center of gravity is always at the middle

8 0
2 years ago
Other questions:
  • Literally don't know how to do this.
    9·1 answer
  • What is one way radiation is used that is beneficial for our health?
    9·1 answer
  • What was the purpose of the 1996 Columbia NASA launch?​
    15·1 answer
  • A very large magnet applies a repulsive force to a smaller (0.05 Kg) magnet. If the smaller magnet accelerates across a friction
    13·1 answer
  • A boy throws a ball vertically up and catches it after 3 s. What height did the ball reach?
    9·2 answers
  • Describe, in detail, an experiment in which you could determine the power for a period of several hours. You must be able to tel
    7·2 answers
  • What effect would a barrier island have on the shoreline of the mainland?
    6·1 answer
  • 1. Light moving through air is incident on a piece of crown glass (1.61) Jt an angle of 45. What is the angle of refraction?
    13·1 answer
  • When a wave hits an object,energy from the wave is both absorbed and reflected off the object
    10·1 answer
  • A particle moving along a straight line with constant acceleration has a velocity of 2.35 m/s at t=3.42 s, and a velocity of -8.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!