Answer : The correct option is, (D) Velocity includes rate of change and direction.
Explanation :
Speed : Speed is defined as the distance traveled by an object with respect to the time taken. It is a scalar quantity that means it tell us about the magnitude of an object not direction.
Velocity : Velocity is defined as the rate of change of position of an object with respect to the time. It is a vector quantity that means it tell us about the magnitude and direction of an object.
The only difference between the speed and the velocity is that the velocity tell us about magnitude and direction but speed tell us about magnitude only.
Hence, the correct option is, (D) Velocity includes rate of change and direction.
Electrons are transferred sequentially between the two photosystems, with photosystem I acting to generate NADPH and photosystem II acting to generate ATP. The pathway of electron flow starts at photosystem II, which is homologous to the photosynthetic reaction center of R. viridis already described.
The correct answer as the first one above !
We want to find how much momentum the dumbbell has at the moment it strikes the floor. Let's use this kinematics equation:
Vf² = Vi² + 2ad
Vf is the final velocity of the dumbbell, Vi is its initial velocity, a is its acceleration, and d is the height of its fall.
Given values:
Vi = 0m/s (dumbbell starts falling from rest)
a = 10m/s² (we'll treat downward motion as positive, this doesn't affect the result as long as we keep this in mind)
d = 80×10⁻²m
Plug in the values and solve for Vf:
Vf² = 2(10)(80×10⁻²)
Vf = ±4m/s
Reject the negative root.
Vf = 4m/s
The momentum of the dumbbell is given by:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
m = 10kg
v = 4m/s (from previous calculation)
Plug in the values and solve for p:
p = 10(4)
p = 40kg×m/s