<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
7,546 J
Explanation:
recall that Potential energy is given by
P.E = mgΔh
where m = 70kg (given)
g = 9.8 m/s² (acceleration due to gravity)
Δh = change in height
= distance from top of building to top of car
= height of building - height of car
= (5+8) - 2
= 11m
substituting all these into the equation:
P.E = mgΔh
= 70 x 9.8 x 11
= 7,546 J
iIn this case the mass of a body cannot be considered to be concentrated at the centre of mass of the body for the purpose of computing the rotational motion
Therefore the answer is False
A or possibly C because the other options have nothing to do with the size of the vibration. If i was you I would answer with A
It would be potiental because your not moving