<span>((x+deltaX)^2+x+deltaX-(x^2+x))/deltaX = (x^2 + 2x delta x + (delta x)^2 + x + delta x - x^2 - x) / delta x = delta x (2x + delta x + 1) / delta x = 2x + delta x + 1
Therefore, </span>Lim as x tends to 0 of <span>((x + delta X)^2 + x + deltaX - (x^2 + x)) / deltaX</span> = 1 + delta x
Answer:
The answer is term
Step-by-step explanation:
Glad i could help
Neither of those work for that equation
Answer: n=0.4 or 2/5
Step-by-step explanation:
Substitute.
2x+(2x -15) = -3
4x -15 = -3
Add 15 to both sides
4x = 12
Divide by 4
X=3
2(3) + y = -3
6+y=-3
-6 from both sides
Y=-9
(3,-9)