Answer:
Honestly makes no sense sorry :(
Explanation:
I can try though.. There are three types of selectivity possible for any synthesis: (i) Chemoselectivity is deciding which group reacts. (ii) Regioselectivity is where the reaction takes place in that group. (iii) Stereoselectivity is how the group reacts with respect to the stereochemistry of the product.
A stereospecific mechanism specifies the stereochemical outcome of a given reactant, whereas a stereoselective reaction selects products from those made available by the same, non-specific mechanism acting on a given reactant. Of stereoisomeric reactants, each behaves in its own specific way.
I tried to explain it the best I could.
Hopefully this helps you :)
Feel free to correct me If it was wrong
Answer:
Correc option: 
Explanation:
size of atom : it says somthing about how many shell present in a particular atom or ion and it can also be evaluated on the basis of radius of atom.
Br^- and Kr has highest number of shell as compared to other group of species .
Na ,S , Mg ,P all are from 3rd period but Kr and Br^- in the 4th period so size of species of this group will more,
Size increases on increasring the shell number
I think the correct answer would be the third option. The correct name for the hydrocarbon described above would be 2-heptyne. It has a chemical formula written as CH3 - CH2 - CH2 - CH2 - C ≡ C - CH3. Counting the number of carbons, we have 7 carbon atoms so we use the prefix hepta-. Since it has a triple bond then it is an alkyne. So, it would be named as heptyne. The triple bond is located on the second carbon atom so we write 2 before the name to indicate the location of the triple bond. The name of the compound would be 2-heptyne.
The mass of plutonium that will remain after 1000 years if the initial amount is 5 g when the half life of plutonium-239 (239pu, pu-239) is 24,100 years is 2.5 g
The equation is Mr=Mi(1/2)^n
where n is the number of half-lives
Mr is the mass remaining after n half lives
Mi is the initial mass of the sample
To find n, the number of half-lives, divide the total time 1000 by the time of the half-life(24,100)
n=1000/24100=0.0414
So Mr=5x(1/2)^1=2.5 g
The mass remaining is 2.5 g
- The half life is the time in which the concentration of a substance decreases to half of the initial value.
Learn more about half life at:
brainly.com/question/24710827
#SPJ4
<span>Sodium chloride is in her beaker </span>