Answer:
Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids and gases from contaminated water. The goal is to produce water fit for a specific purpose. Most water is purified for human consumption (drinking water), but water purification may also be designed for a variety of other purposes, including meeting the requirements of medical, pharmacological, chemical and industrial applications. In general the methods used include physical processes such as filtration,sedimentation, and distillation, biological processes such as slow sand filters or biologically active carbon, chemical processes such asflocculation and chlorination and the use of electromagnetic radiation such as ultraviolet light.
Extreme lack or loss of water may lead to dehydration of the body and other health complications. For this reason, governments ensure that citizens have access to clean and safe water for domestic use. Clean water is essential in ensuring that no pathogens or impurities are ingested by people, either through direct drinking or through food.
To attain these standards of water, purification is important. Water purification involves physical and chemical processes, which are carried out stepwise to ensure the water is safe and free from any harm. This directional process essay synthesizes the steps, which have to be followed to achieve this task.
In essence, water purification denotes the process used to free water from impurities like bacteria and contaminants. Since the process is aimed at eliminating all the impurities present in the water, it is necessary to apply chemical and physical methods of separation in an orderly manner.
Explanation:
Answer:
- The chemical reaction is not balanced. There is two oxygens on the reactant's side while there's only one oxygen on the products side.
- I would not say it's following the law of conservation of mass as it's not a balanced equation.
- To balance this equation, you would need to add the coefficient of '2' to Magnesium (Mg) on the reactants side, and add the coefficient of '2' to the products side. This would make it so that there's 2 Mg's and 2 O's on both the reactant's side and products side.
edit: I hope this helped you in some way. ^^
Answer:
!atoms in the nitrogen family.. have 5 valence electrons. They tend to share electrons when they bond. Other elements in this family are phosphorus, arsenic, antimony, and bismuth.
Answer:
26 Hydrogen atoms
Explanation:
H2O
Each hydrogen atom: 2+16 = 18g
Hence,
1 atom -> 18g
x atoms -> 709g
709/18 = 39 atoms
Therefore, 39 atoms give 709g
Hence, 26 Hydrogen atoms are used
<em>Feel free to mark it as brainliest :D</em>