Answer:
0.19 kg
8 N
1.964 N
58.86 N
15 kg
Explanation:
w = Weight of an object = 100 N
g = Acceleration due to gravity of Earth = 
m = Mass of an object
Weight is given by

Mass of the object is 0.19 kg
g = 
m = 4 kg

Weight of the object is 8 N.
m = 200 g

Weight of the object is 1.964 N.
Weight is the force the Earth exerts on an object which is on the surface of the Earth.
m = 6kg

The force of the object is 58.86 N.
w = 150 N
a = g = 

Mass of the object is 15 kg.
Answer:
0.51M
Explanation:
Given parameters:
Initial volume of NaBr = 340mL
Initial molarity = 1.5M
Final volume = 1000mL
Unknown:
Final molarity = ?
Solution;
This is a dilution problem whereas the concentration of a compound changes from one to another.
In this kind of problem, we must establish that the number of moles still remains the same.
number of moles initially before diluting = number of moles after dilution
Number of moles = Molarity x volume
Let us find the number of moles;
Number of moles = initial volume x initial molarity
Convert mL to dm³;
1000mL = 1dm³
340mL gives
= 0.34dm³
Number of moles = initial volume x initial molarity = 0.34 x 1.5 = 0.51moles
Now to find the new molarity/concentration;
Final molarity =
=
= 0.51M
We can see a massive drop in molarity this is due to dilution of the initial concentration.
Answer:
The net ionic equation is
C6H5COOH+ CN-= C6H5COO- + HCN
Explanation:
From the ionic equation
C6H5COOH + Na+ + CN- = C6H5COO- + Na+ + HCN
Only sodium is the spectator ion, so it cancels out, since C6H5COOH and HCN do not ionize completely they are left undissociated
Answer:
7.462
Explanation:
Well, every time that the tempurature is increased, the atmspheric pressure is increased by 0.574%. This would then mean that you would have 0.574 times
13. That would then equal 7.462. I hope this helps.
Gravity is the force of motion pulling down objects to the ground. If there was no gravity, everyone would walking as if they were on the moon.
Mass is what gravity needs. If an object has a little amount of mass, gravity will be able to easily bring it to the ground.
If an object has a very huge amount of mass, gravity will still be able to bring it to the ground but it will be hard.
For example: An airplane has a HUGE amount of mass. Gravity pulls it down but the airplane needs to be steering up in order for it to be straight. Gravity is applied on the airplane when it is landing.
BUT..... if a table is in the way of an object it depends if it will fall down to the ground or stay on the table.
If an object has little mass and a table is in the way of gravity pulling it down to the ground, the object will stay on the table. Like a plate of food on a table.
If an object has a very big amount of mass and a table is in the way of gravity pulling it to the ground, the object will break the object and make it's make to the ground. That is mostly why most of the time people have very strong tables/ anything to hold a heavy object.
Another example is if you're lifting weights and you have little amount of mass, you're most likely to get the little sized weight. It depend on you mass.
Here are some pictures I included here as well of Mass and gravity.
Glad to help! :) :D