Answer:

Explanation:
Helo,
In this case, the pressure must be computed as follows:

Which is using the density of mercury (13.6 g/mL) and its height, thus, we obtain (using the proper units):

Best regards.
Answer:
Percentage composition = 14.583%
Explanation:
In chemistry, the emprical formular of a compound is the simplest formular a compound can have. It shows the simplest ratio in which the elements are combined in the compound.
Percentage composition by mass of Nitrogen
Nitrogen = 14g/mol
In one mole of the compound;
Mass of Nitrogen = 1 mol * 14g/mol = 14g
Mass of compound = 1 mol * 96.0 g/mol = 96
Percentage composition of Nitrogen = (Mass of Nitrogen / Mass of compound) * 100
percentage composition = 14/96 * 100
Percentage composition = 0.14583 * 100
Percentage composition = 14.583%
Answer:
7.5 g
Explanation:
There is some info missing. I think this is the original question.
<em>Ammonium phosphate ((NH₄)₃PO₄) is an important ingredient in many fertilizers. It can be made by reacting phosphoric acid (H₃PO₄) with ammonia (NH₃). What mass of ammonium phosphate is produced by the reaction of 4.9 g of phosphoric acid? Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Write the balanced equation
H₃PO₄ + 3 NH₃ ⇒ (NH₄)₃PO₄
Step 2: Calculate the moles corresponding to 4.9 g of phosphoric acid
The molar mass of phosphoric acid is 98.00 g/mol.

Step 3: Calculate the moles of ammonium phosphate produced from 0.050 moles of phosphoric acid
The molar ratio of H₃PO₄ to (NH₄)₃PO₄ is 1:1. The moles of (NH₄)₃PO₄ produced are 1/1 × 0.050 mol = 0.050 mol.
Step 4: Calculate the mass corresponding to 0.050 moles of ammonium phosphate
The molar mass of ammonium phosphate is 149.09 g/mol.

10.92N
Force = mass x acceleration
4.2kg x 1.6m/s^2 = 10.92N
I believe it’s true when particles move they create heat