Given:
Iron, 125 grams
T
1 = 23.5 degrees Celsius, T2 =
78 degrees Celsius.
Required:
Heat produced in kilojoules
Solution:
The molar mass of iron is 55.8
grams per mole. SO we need to change the given mass of iron into moles.
Number of moles of iron = 125 g/(55.8
g/mol) = 2.24 moles
<span>
Q (heat) = nRT = nR(T2 = T1)</span>
Q (heat) = 2.24 moles (8.314
Joules per mol degrees Celsius) (78.0 degrees Celsius – 23.5 degrees Celsius)
<u>Q (heat) = 1014.97 Joules or
1.015 kilojoules</u>
<span>This is the amount of heat
produced in warming 125 g f iron.</span>
The energy change if 84.0 g of CaO react with excess water is 98KJ of heat is released.
calculation
heat = number of moles x delta H
delta H = - 65.2 Kj/mol
first find the number of moles of CaO reacted
moles = mass/molar mass
the molar mass of CaO = 40 + 16= 56 g/mol
mass = 84 g
moles therefore = 84 g/56 g/mol =1.5 moles
Heat is therefore = 1.5 moles x -65.2 = - 97.8 Kj = -98 Kj
since sign is negative the energy is released
Answer:
helium , krypton,xenon,radon, argon are noble gasses
K + S = K2S
Potassium reacts with sulfur to produce potassium sulfide
Answer:
H2O
Explanation:
PLS MARK ME TO THE BRAINLIST