Answer:
1) When 69.9 g heptane is burned it releases 5.6 mol water.
2) C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.
Explanation:
- Firstly, we should balance the equation of heptane combustion.
- The balanced equation is: <em>C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.</em>
This means that every 1.0 mole of complete combustion of heptane will release 8 moles of H₂O.
- We need to calculate the no. of moles in 69.9 g of heptane that is burned using the relation: <em>n = mass/molar mass.</em>
n of 69.9 g of heptane = mass/molar mass = (69.9 g)/(100.21 g/mol) = 0.697 mol ≅ 0.7 mol.
<em><u>Using cross multiplication:</u></em>
1.0 mol of heptane releases → 8 moles of water.
0.7 mol of heptane releases → ??? moles of water.
<em>∴ The no. of moles of water that will be released from burning (69.9 g) of water</em> = (0.7 mol)(8.0 mol)/(1.0 mol) = <em>5.6 mol.</em>
<em>∴ When 69.9 g heptane is burned it releases </em><em>5.6</em><em> mol water. </em>
<em />
Answer:
See explaination
Explanation:
See attachment for the drawing of the intermediate products b and c (both are neutral; omit byproducts).
Seven valence electrons are present in the 'Lewis structure' for the given chlorine atom
A Chlorine atom has total 17 electrons in total. In the 'first orbit' 2 electrons, 10 electrons in the 'second orbit' and finally 7 electrons in the last orbit. As Chlorine is a Group 7 element, chlorine will have 7 'valence electrons' in its outermost orbit. While drawing the 'Lewis structure' of Chlorine we shall put seven dots that is the electrons or valance electrons around the symbol of Chlorine (CI).
<h3>
What are Valence electrons ?</h3>
The electrons in an atom's outermost shell, or energy level, are called valence electrons. For instance, the valence electrons of oxygen are six, with two in the 2s subshell and four in the 2p subshell.
- An atom's outer shell electrons, known as valence electrons, can take role in the creation of chemical bonds. When two atoms establish a single covalent bond, normally both atoms contribute one valence electron to create a shared pair. The ground state of an atom is its state with the least amount of energy.
Learn more about Valence electron here:
brainly.com/question/371590
#SPJ4
Answer:
It's 120 g
Explanation:
I'm doing that question on ck12 and it's correct.
Answer:
Cu(OH)₂ will precipitate first, with [OH⁻] = 2.97x10⁻¹⁰ M
Explanation:
The equilibriums that take place are:
Cu⁺² + 2OH⁻ ↔ Cu(OH)₂(s) ksp = 2.2x10⁻²⁰ = [Cu⁺²]*[OH⁻]²
Co⁺² + 2OH⁻ ↔ Co(OH)₂(s) ksp = 1.3x10⁻¹⁵ = [Co⁺²]*[OH⁻]²
Keep in mind that <em>the concentration of each ion is halved </em>because of the dilution when mixing the solutions.
For Cu⁺²:
2.2x10⁻²⁰ = [Cu⁺²]*[OH⁻]²
2.2x10⁻²⁰ = 0.25 M*[OH⁻]²
[OH⁻] = 2.97x10⁻¹⁰ M
For Co⁺²:
1.3x10⁻¹⁵ = [Co⁺²]*[OH⁻]²
1.3x10⁻¹⁵ = 0.25 M*[OH⁻]²
[OH⁻] = 7.21x10⁻⁸ M
<u>Because Copper requires less concentration of OH⁻ than Cobalt</u>, Cu(OH)₂ will precipitate first, with [OH⁻] = 2.97x10⁻¹⁰ M