Answer:
1. Identify the problem: Packaging boxes use too much material and create waste
2. What are the equations for the volume and surface area of a cube and rectangular prism?
Volume of a cube: Vcube = L x L x L = L3
Surface area of a cube: SAcube = 6 x (L x L) = 6L2
Volume of a rectangular prism: VRP = L x W x H = LWH
Surface area of a rectangular prism: SARP = 2 x (L x W) + 2 x (L x H) + 2 x (W x H) = 2(LW + LH + WH)
3. What is the difference in surface area of the packages below? (Note that they have the same volume.)
SAcube = 6L2
= 6 (20 cm)2
= 2,400 cm2
SARP = 2(LW + LH + WH) = 2 (20cm x 10cm + 20cm x 40cm + 10cm x 40cm) = 2,800 cm2
SARP – SAcube = 2,800 cm2
– 2,400cm2
= 400 cm
Step-by-step explanation:
everything in bold is the answer
Can I please get the Brainlist
Answer:
Step-by-step explanation:
-5x² - 6 = -4x
-5x² + 4x - 6 = 0
a = -5 ; b = 4 ; c = -6
Discriminant = b² - 4ac
= 4² - 4*(-5)*(-6)
= 16 - 120
= -104
roots = 
![=\dfrac{-4+\sqrt{-104}}{2*(-5)};\dfrac{-4-\sqrt{-104}}{2*(-5)}\\\\=\dfrac{-4+2i\sqrt{26}}{-10} ; \dfrac{-4-2i\sqrt{26}}{-10}\\\\=\dfrac{(-2)[2-i\sqrt{26}]}{-10} \ ; \ \dfrac{(-2)[2+i\sqrt{26}]}{-10}\\\\=\dfrac{2-i\sqrt{26}}{5} \ ; \ \dfrac{2+i\sqrt{26}}{5}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B-4%2B%5Csqrt%7B-104%7D%7D%7B2%2A%28-5%29%7D%3B%5Cdfrac%7B-4-%5Csqrt%7B-104%7D%7D%7B2%2A%28-5%29%7D%5C%5C%5C%5C%3D%5Cdfrac%7B-4%2B2i%5Csqrt%7B26%7D%7D%7B-10%7D%20%3B%20%5Cdfrac%7B-4-2i%5Csqrt%7B26%7D%7D%7B-10%7D%5C%5C%5C%5C%3D%5Cdfrac%7B%28-2%29%5B2-i%5Csqrt%7B26%7D%5D%7D%7B-10%7D%20%5C%20%3B%20%5C%20%5Cdfrac%7B%28-2%29%5B2%2Bi%5Csqrt%7B26%7D%5D%7D%7B-10%7D%5C%5C%5C%5C%3D%5Cdfrac%7B2-i%5Csqrt%7B26%7D%7D%7B5%7D%20%5C%20%3B%20%5C%20%5Cdfrac%7B2%2Bi%5Csqrt%7B26%7D%7D%7B5%7D)
Step-by-step explanation:
1)
3x+3
2)
10+2x
3)
8x+24
4)
8a+8b+8c
The answer is 31 1/6, I hope this helps!