Answer:
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution.
Explanation:
<em>Which of the statements correctly describe the properties of a buffer?</em>
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution. TRUE. The conjugate base neutralizes the excess of hydrogen protons.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base. TRUE.
c. An acidic buffer solution is a mixture of a weak base and its conjugate acid. FALSE. This is a basic buffer solution.
d. The weak acid of an acidic buffer will accept hydrogen protons when a strong base is added to the solution. FALSE. The weak acid will react with the hydroxyl ions from the added base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution. TRUE. These hydrogen protons will form water.
f. The conjugate base of an acidic buffer will donate hydrogen protons when a strong acid is added to the solution. FALSE. It will accept hydrogen protons.
Movement from place to palce
Saturated Solution: A solution with solute that dissolves until it is unable to dissolve anymore, leaving the undissolved substances at the bottom. Unsaturated Solution: A solution ( with less solute than the saturated solution )that completely dissolves, leaving no remaining substances. Supersaturated Solution.
Answer:
Answer: B. Water condenses to form clouds.
Explanation:
When the moisture condenses, this results in the release of energy. The energy causes the air to be warm and results in the rise of air in the upper atmosphere. This process results in the instability in the atmosphere and cumulonimbus clouds are formed. These clouds support lightening during a thunderstorm.
Answer:
6.2 g
Explanation:
In a first-order decay, the formula for the amount remaining after <em>n</em> half-lives is
where
<em>N</em>₀ and <em>N</em> are the initial and final amounts of the substance
1. Calculate the <em>number of half-lives</em>.
If
2. Calculate the <em>final mass</em> of the substance.