Molarity = mol/liter
0.708M = 0.098mol/L
Rearrange to find L:
0.098mol/0.708M = .138L
For every liter there is 1000 mL:
.138L • 1000mL =138mL KOH
since the concentration of Carbon Dioxide will increase, it would make Q > K, cause equilibrium to shift in the direction with less moles of gas to alleviate the extra pressure. In this case, the reaction will shift left because there are fewer moles of gas present.
Potassium ......................
The balanced equation is 2
AlI
3
(
a
q
)
+
3
Cl
2
(
g
)
→
2
AlCl
3
(
a
q
)
+
3
I
2
(
g
)
.
<u>Explanation:</u>
- Aluminum has a typical oxidation condition of 3+ , and that of iodine is 1- .
Along these lines, three iodides can bond with one aluminum. You get AlI3. For comparable reasons, aluminum chloride is AlCl3.
- Chlorine and iodine both exist normally as diatomic components, so they are Cl2( g ) also, I2( g ), individually. In spite of the fact that I would anticipate that iodine should be a strong.
Balancing the equation, we get:
2AlI
3( aq ) + 3Cl2
( g ) → 2AlCl3
( aq )
+ 3
I
2 ( g )
-
Realizing that there were two chlorines on the left, I simply found the basic numerous of 2 and 3 to be 6, and multiplied the AlCl 3 on the right.
-
Normally, presently we have two Al on the right, so I multiplied the AlI 3 on the left. Hence, I have 6 I on the left, and I needed to significantly increase I 2 on the right.
-
We should note, however, that aluminum iodide is viciously receptive in water except if it's a hexahydrate. In this way, it's most likely the anhydrous adaptation broke down in water, and the measure of warmth created may clarify why iodine is a vaporous item, and not a strong.
Consider you have a mixture of amino acids(contains all set of amino acids such as polar, non polar). Other than TLC, how are you supposed to separate a single amino acid from the mixture without loss of amino acid quantitatively.