Iron has the chemical formula Fe from its Latin name, ferrum. Its atomic number is 26, and its molar mass is 55.845 grams per mole. It has a metallic gray color and is attracted to magnets. Iron is the second most-abundant metal on Earth.
Answer:
Option A (9.0) is the correct alternative.
Explanation:
The given values are:
Molarity,
= 1.5 M
Volume,
= 6000 mL
or,
= 6 L
As we know,
⇒ 
or,
⇒ 
By putting the values, we get


Yes, Is it possible to use subatomic particles as an energy source.
<h3>What are subatomic particles?</h3>
A subatomic particle is nothing but a particle which is smaller than an atom in size. Typically, an atom can be broken down into three subatomic particles, namely: protons, electrons, and neutrons.
Yes, Is it possible to use subatomic particles as an energy source.
There are instances when the protons and electrons in an atom's outermost shells are not strongly attracted to one another. It is possible to force these electrons out of their orbits.
They may move from one atom to another by exerting force. Electricity is made up of these moving electrons.
Learn more about subatomic particles here:
brainly.com/question/13303285
#SPJ1
Boyle’s law gives the relationship between pressure and volume of gases. It states that at constant temperature the pressure of gas is inversely proportional to volume of gas.
PV = k
Where P is pressure V is volume and k is constant
P1V1 = P2V2
Parameters at STP are on the left side and parameters for the second instance are on the right side of the equation
P1 - standard pressure - 1.0 atm
Substituting the values in the equation
1.0 atm x 5.00 L = P x 15.0 L
P = 0.33 atm
New pressure is 0.33 atm
6.337 X 10^-7. To get this, divide the atoms by Avogadro's number, them multiply my the molar mass of Ni.