Answer:
Polar
Explanation:
A polar climate is a place where the climate usually has a temperature below freezing, icy, and covered in snow. These areas do not get direct heat and sunlight from the sun. Polar climates are located at the North Pole of the Arctic, and at the South Pole on the continent of Antarctica.
Answer:J.J. Thomson, he was using a high-vacuum cathode-ray tube
Explanation:(I Googled it)
Answer:
21.10g of H2O
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2C7H14 + 21O2 —> 14CO2 + 14H2O
From the balanced equation above, 2L of C7H14 produced 14L of H2O.
Therefore, 3.75L of C7H14 will produce = (3.75 x 14)/2 = 26.25L of H2O.
Next, we shall determine the number of mole of H2O that will occupy 26.25L at stp. This is illustrated below:
1 mole of a gas occupy 22.4L at stp
Therefore, Xmol of H2O will occupy
26.25L i.e
Xmol of H2O = 26.25/22.4
Xmol of H2O = 1.172 mole
Therefore, 1.172 mole of H2O is produced from the reaction.
Next, we shall convert 1.172 mole of H2O to grams. This is illustrated below:
Number of mole H2O = 1.172 mole
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H2O =..?
Mass = mole x molar mass
Mass of H2O = 1.172 x 18
Mass of H2O = 21.10g
Therefore, 21.10g of H2O is produced from the reaction.
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
6 g S * 1 mol/32.06 g S = 0.187 mol S
Moles O₂ needed = 0.187 mol S * 3 mol O₂/2 mol S = 0.2805 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.2805 mol O₂ * 32 g/mol = 8.976 g O₂