Answer:
1. 505g is the mass of the aluminium.
2. The answer is in the explanation
Explanation:
1. To solve this question we need to find the volume of the rectangle. With the volume and density we can find the mass of the solid:
Volume = 7.45cm*4.78cm*5.25cm
Volume = 187cm³
Mass:
187cm³ * (2.702g/cm³) = 505g is the mass of the aluminium
2. When the temperature of a liquid increases, the volume increases doing the density decreases because density is inversely proportional to volume. And works in the same way for gases because the temperature produce more collisions and the increasing in volume.
Answer:
The answer to your question is: ΔH = -283 kJ/mol, first option
Explanation:
Reaction
CO + O₂ ⇒ CO₂
ΔH = ∑H products - ∑H products
ΔH = -393.5 - (-110.5 + 0)
ΔH = -393.5 + 110.5
ΔH = -283 kJ/mol
Answer:
C. The reaction can be broken down and performed in steps
Explanation:
Hess's Law of Constant Heat Summation states that irrespective of the number of steps followed in a reaction, the total enthalpy change for the reaction is the sum of all enthalpy changes corresponding to all the steps in the overall reaction. The implication of this law is that the change of enthalpy in a chemical reaction is independent of the pathway between the initial and final states of the system.
To obtain MgO safely without exposing magnesium to flame, the reaction sequence shown in the image attached may be carried out. Since the enthalpy of the overall reaction is independent of the pathway between the initial and final states of the system, the sum of the enthalpy of each step yields the enthalpy of formation of MgO.
In gamma decay, no change in proton number occurs, so the atom does not become a different element