Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.
Calcium carbonate has the formula: CaCO3
From the periodic table:
mass of calcium = 40 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Therefore,
molar mass of CaCO3 = 40 + 12 + 3(16) = 100 grams
molar mass of carbonate = 12 + 3(16) = 60 grams
One mole of calcium carbonate contains one mole of carbonate. Therefore, 100 grams of CaCO3 contains 60 grams of CO3.
If the 0.5376 grams of the unknown substance is CaCO3, then the amount of carbonate will be:
amount of carbonate = (0.5376*60) / 100 = 0.32256 grams
Based on the above calculations, the sample is not CaCO3
Answer:
0.00000363618
could be wrong.
double check me someone or just trust me
(don't blame me if you get it wrong)
For a given peak intensity of radiation of a star that occurs at a wavelength of 2 nanometers, this is located at the spectral band of an X-ray. An X-ray's wavelength typically goes from 0.1 nano meters to 10 nano meters. Given that, the wavelength of the star fits perfectly into the range of an X-ray