Answer: An atom in an excited state contains more of kinetic energy than the same atom in the ground state.
Explanation:
Kinetic energy is the energy acquired by an object due to its motion. And, thermal energy is the internal energy of an object arisen because of the kinetic energy present within the molecules of the object.
Potential energy is the energy acquired by an object due to its position.
The total energy present at the center of mass of an object is known as mass-energy.
So, when an atom gets excited then it means it is gaining kinetic energy due to which it moves from its initial position after getting excited.
Thus, we can conclude that an atom in an excited state contains more of kinetic energy than the same atom in the ground state.
Answer:
A reaction is non-spontaneous at any temperature when the Gibbs free energy > 0.
Explanation:
There is a state function, that determines if a reaction is sponaneous or non spontaneous:
ΔG = Gibbs free energy
A reaction is non spontaneous when it does require energy to produce that reaction. It will be spontaneous, when the reaction does not require energy to be occured.
The formula is: ΔG = ΔH - T.ΔS
ΔH → Enthalpy → Energy gained or realeased as heat.
ΔH < 0 → <em>Exothermic reaction. Spontaneity is favored
</em>
T → Temperature
ΔS → Entropy → Degree of disorder of a system.
When the system has a considered disorder ΔS > 0, disorder increases.
When the system is more ordered, ΔS < 0, disorder decreases.
The reaction will be non spontaneous if, the enthalpy is positive (endothermic reaction) and the ΔS < 0 (disorder decreases). It will not occur if we do not give energy.
ΔG < 0 → Spontaneous reaction
ΔG > 0 → Non spontaneous reaction
ΔG = 0 → System in equilibrium