According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
<h3>How to apply translations on a given function</h3>
<em>Rigid</em> transformations are transformation such that the <em>Euclidean</em> distance of every point of a function is conserved. Translations are a kind of <em>rigid</em> transformations and there are two basic forms of translations:
Horizontal translation
g(x) = f(x - k), k ∈
(1)
Where the translation goes <em>rightwards</em> for k > 0.
Vertical translation
g(x) = f(x) + k, k ∈
(2)
Where the translation goes <em>upwards</em> for k > 0.
According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
To learn more on translations: brainly.com/question/17485121
#SPJ1
Answer:
To add or subtract functions, just add or subtract the values at each point where it makes sense. If the functions are given by formulas, you can just add or subtract the formulas (it doesn't matter whether you plug in values before or after).
Step-by-step explanation:
<span>So far I have:
(1.25 + 1) </span><span>if </span>x<span> is in the interval</span><span> (-inf,7]
(2.25 +1) </span><span>if </span>x<span> is in the interval (7,13)</span><span>
(3.50+1+3) </span><span>if </span>x<span> is in the interval [13,inf)</span>
Answer:
Dharma
Step-by-step explanation:
looked it up
1. 8c^2-26c+15= (4c-3) (2c-5). Break the expression into groups: =(8c^2-6c)+(-20c+15). Factor out 8c^2-6c: 2c(4c-3). Factor out -5 from -20c+ 15: -5(4c-3). Lastly factor out common term (4c-3) and thats how you'll get your answer (4c-3) (2c-5).
2. common factors for 270 and 360 is 90.To find this write the factors of each and find the largest one.270: 1, 270, 2, 135, 3, 90, 5, 54, 6, 45, 9, 30, 10, 27, 15, 18360: 1, 360, 2, 180, 3, 120, 4, 90, 5, 72, 6, 60, 8, 45, 9, 40, 10, 36, 12, 30, 15, 24, 18, 20
3. The factors for 8 a3b2 and 12 ab4 is 4. because 8: 1, 2, 4, 812: 1, 2, 3, 4, 6, 12.
4. 81a^2+36a+4= (9a+2)^2. Break down the expression into groups: (81a^2+18a)+(18a+4). Factor out 9a from 81a^2 +18a: 9a(9a+2). Factor out 2 from 18a+4: 2(9a+2). so the groups you got are now 9a(9a+2)+2(9a+2). Lastley factor out common term (9a+2) to get (9a+2) (9a+2). Finally you get the answer (9a+2)^2.
5. mn-15+3m-5n= (n+3)(m-5). factor out m from nm+3m: m(n+3). Factor out -5 from -5n-15: -5(n+3). And thats how you get the number (n+3)(m-5)
Hope this helped :) Have a great day