1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali [406]
4 years ago
9

What is the value of x?

Mathematics
2 answers:
nalin [4]4 years ago
7 0

we know that

An exterior angle is equal to the sum of the two non adjacent angles

so

In this problem

100\°=x\°+70\°

Solve for x

Subtract  70\° both sides

x\°+70\°-70\°=100\°-70\°

x\°=30\°

therefore

the answer is the option D

30\°

liq [111]4 years ago
6 0
An exterior angle is equal to the sum of the 2 non adjacent angles. In this case

100 = x + 70 Subtract 70
x = 100 - 70
x = 30
You might be interested in
What number multiples to -1 and adds to -50
koban [17]
Z: is the number

[Z*(-1)]+(-50)
(-Z)+(-50)
-Z-50

<span>I hope it helps you :)</span>
5 0
3 years ago
When fractions share the same number on the bottom they have a?
Snezhnost [94]
Fractions that have the same number on the bottom have a "common denominator."
6 0
3 years ago
Differentiate with respect to X <br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B%20%5Cfrac%7Bcos2x%7D%7B1%20%2Bsin2x%20%7D%20
Mice21 [21]

Power and chain rule (where the power rule kicks in because \sqrt x=x^{1/2}):

\left(\sqrt{\dfrac{\cos(2x)}{1+\sin(2x)}}\right)'=\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'

Simplify the leading term as

\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}

Quotient rule:

\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'=\dfrac{(1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))'}{(1+\sin(2x))^2}

Chain rule:

(\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)

(1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)

Put everything together and simplify:

\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{(1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x))}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x)}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac{\sin(2x)+1}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac1{1+\sin(2x)}

=-\dfrac1{\sqrt{\cos(2x)}}\dfrac1{\sqrt{1+\sin(2x)}}

=\boxed{-\dfrac1{\sqrt{\cos(2x)(1+\sin(2x))}}}

5 0
3 years ago
Which of the following equals 3x2−10x−83x2-10x-8 when factored completely? 
xeze [42]
If it was typo and the original equation is 3x^2 - 10x - 8, then the answer would be (<span><span>3x+2)(x-4), but if not then IDK.

Hope this helps!</span></span>
4 0
4 years ago
Calcular s, si la figura es un prisma a=15m2, b=20m2
julia-pushkina [17]
Celculate the figures by using the numbers,with letters
6 0
3 years ago
Other questions:
  • Find the value of X in this equilateral triangle.
    12·1 answer
  • Number 8 please I need help fast. Extra points
    6·2 answers
  • you start with 15 dollars and save 8 dollars each week. What algebraic expression model of the total amount you saved
    10·1 answer
  • He keeps bouncing and more coins bounce out of the other pocket. That total this time was $2.10 from 14 coins. What are the coin
    12·2 answers
  • PLEASE HELPPP <br>Instructions: Find the missing side. Round your answer to the<br><br>nearest tenth
    7·1 answer
  • 1. A line
    8·1 answer
  • Round the following 25.635 to 2 d.p <br><br>315.239 to 1 dp<br><br>0.3975 to 3dp <br>14.989 to 1 dp
    13·1 answer
  • The price of a toy usually costing £50 is increases to £65<br> work out the percentage increase
    9·2 answers
  • (6,-5) is a point on the terminal side of 0. Find the exact values of cos0, csc0, and tan0.
    15·2 answers
  • The graph below represents the function f(x) and the translated function g(x) .
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!