Answer:
25.6 units
Step-by-step explanation:
From the figure we can infer that our triangle has vertices A = (-5, 4), B = (1, 4), and C = (3, -4).
First thing we are doing is find the lengths of AB, BC, and AC using the distance formula:

where
are the coordinates of the first point
are the coordinates of the second point
- For AB:
![d=\sqrt{[1-(-5)]^{2}+(4-4)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B1-%28-5%29%5D%5E%7B2%7D%2B%284-4%29%5E2%7D)



- For BC:





- For AC:
![d=\sqrt{[3-(-5)]^{2} +(-4-4)^{2}}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B3-%28-5%29%5D%5E%7B2%7D%20%2B%28-4-4%29%5E%7B2%7D%7D)





Next, now that we have our lengths, we can add them to find the perimeter of our triangle:




We can conclude that the perimeter of the triangle shown in the figure is 25.6 units.
It could be 20 times or 25 times
Answer:
6 more students
Step-by-step explanation:
hope this helps
Answer:
function
Step-by-step explanation:
Answer:
La afirmación es falsa, no todos los divisores de 100 son divisores de 50, ya que solo se toman en cuenta sus divisores comunes, los cuales son todos los divisores de 50. Expresamos a 100 en sus factores primos: 100 = 2 · 2 · 5 · 5 = 2² · 5² Divisores de 100: {1, 2, 4, 5, 10, 20, 25, 50, 100}
Step-by-step explanation: