Answer:
<h2>A. The image shows Boyle's Law because volume decreases as pressure increases.</h2>
Explanation:
According to Boyle's Law, at constant temperature, pressure and volume have inverse relation that is as pressure would increase, volume would decrease.
According to Charles Law, at constant pressure, the volume is directly proportional to temperature.
According to the given graph and diagram, the temperature is constant and volume and pressure have inverse relation.
Thus, option A is correct.
Isolated atom basically means atom which exists separatly without any bonding with other atoms. It can only be acheived experimentaly because normally all atoms are bonded together by strong nuclear forces and its really hard to isolate a single atom.
39.96 g product form when 16.7 g of calcium metal completely reacts.
<h3>What is the stoichiometric process?</h3>
Stoichiometry is a section of chemistry that involves using relationships between reactants and/or products in a chemical reaction to determine desired quantitative data.
Equation:
→ 
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
= 16.7 g Ca x
x
x 
= 39.96 g
Hence, 39.96 g product form when 16.7 g of calcium metal completely reacts.
Learn more about the stoichiometric process here:
brainly.com/question/15047541
#SPJ1
Biuret reagent will indicate the presence of protein in a given sample. It is also known as the Piotrowski's test. This reagent consists of copper (II) sulfate and sodium hydroxide. It detects peptide bonds by the reaction of the copper ions in an alkaline solution. The copper ions would form violet colored complexes when peptide is present in the solution. From this test, concentration can be calculated since the intensity of the color depends on the amount of peptide bonds and according to the Beer-Lambert law concentration and the absorption of light is proportional. The concentration is calculated by a spectrophotometric technique at a wavelength of 540 nm.
A, O2 has to be a reactant for combustion to burn