Answer:
The induced current is 26.7 mA
Explanation:
Given;
area of the loop, A = 0.078 m²
initial magnetic field, B₁ = 3.8 T
change in the magnetic field strength, dB/dt = 0.24 T/s
The induced emf is calculated as;

The resistance of the loop = 0.7 Ω
The induced current is calculated as;

Answer:
Q = 1057.5 [cal]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat energy [cal]
Cp = specific heat = 0.47 [cal/g*°C]
T_final = final temperature = 32 [°C]
T_initial = initial temperature = 27 [°C]
m = mass of the substance = 450 [g]
Now replacing:
![Q=450*0.47*(32-27)\\Q=1057.5[cal]](https://tex.z-dn.net/?f=Q%3D450%2A0.47%2A%2832-27%29%5C%5CQ%3D1057.5%5Bcal%5D)
Answer:
The resultant velocity is <u>169.71 km/h at angle of 45° measured clockwise with the x-axis</u> or the east-west line.
Explanation:
Considering west direction along negative x-axis and north direction along positive y-axis
Given:
The car travels at a speed of 120 km/h in the west direction.
The car then travels at the same speed in the north direction.
Now, considering the given directions, the velocities are given as:
Velocity in west direction is, 
Velocity in north direction is, 
Now, since
are perpendicular to each other, their resultant magnitude is given as:

Plug in the given values and solve for the magnitude of the resultant.This gives,

Let the angle made by the resultant be 'x' degree with the east-west line or the x-axis.
So, the direction is given as:

Therefore, the resultant velocity is 169.71 km/h at angle of 45° measured clockwise with the x-axis or the east-west line.
Answer:
Expression of work done is

Work done to move the sled is given as 187.2 J
Explanation:
As we know that the formula of work done is given as

here we know that
F = 12.6 N
d = 15.4 m

so we will have


It is defined by their wavelength. Different colors have different wavelengths. For example, radio waves have a really long wavelength, whereas gamma-rays have a very short wavelength.