Explanation:
It is known that for
, ppm present in 1
are as follows.
1
= 0.494 ppm
So, 150
= 
= 0.15 
Therefore, calculate the equivalent concentration in ppm as follows.

= 0.074 ppm
Thus, we can conclude that the equivalent concentration in ppm at STP is 0.074 ppm.
This is a true statement if it is density you are looking for... Density problem.....
Density is the ratio of the mass of an object to its volume.
D = m / V
D = 104g / 14.3 cm³ = 7.27 g/cm³ .............. to three significant digits
The conventions for the units of density is that grams per cubic centimeter (g/cm³) are usually used for solids, but will work for anything. Grams per milliliter (g/mL) are usually used for liquids and grams per liter (g/L) are for gases. Therefore, by convention, the units for tin (a solid) should be in grams per cubic centimeter.
Since 1 mL is equivalent to 1 cm³, then the density could be expressed as 7.27 g/mL.
The accepted value for the density of tin is 7.31 g/cm³
Answer:
Most nonmetals are solids, but some are gaseous or liquid. All nonmetals are solid unless they bond with a metal.
Explanation:
ANSWER: LOOK IT UP IN YO DICtionary
- williams got dem guns
Number of moles : n₂ = 1.775 moles
<h3>Further explanation</h3>
Given
Moles = n₁ = 1.4
Volume = V₁=22.4 L
V₂=28.4 L
Required
Moles-n₂
Solution
Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
The ratio of gas volume will be equal to the ratio of gas moles

Input the values :
n₂ = (V₂ x n₁)/V₁
n₂ = (28.4 x 1.4)/22.4
n₂ = 1.775 moles