Answer:
10 neutrons
Explanation:
N=Z-A ie. number of neutrons=mass number-atomic number
N=19-9=10
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M
Answer:
The mass of reactants and products are equal hence the reaction obeys law of conservation of mass
Explanation:
The law of mass conservation states that for a closed system to all transfer of mass, the mass of system must remain constant over time. This means for a chemical reaction, the mass of reactants must equal the mass of products.
if 2.796g of Zn reacts with 2.414g of sulphur to produce 4.169g of ZnS ad 1.041g of unreacted sulphur, then it means that accorfing to the law of mass conservation, the mass of reactants (zinc and sulphur), must be equal to mass of products (zinc sulfide and unreacted sulphur)
Mass of reactants = 2.796g + 2.414g =5.21g
Mass of products = 4.169g + 1.041g=5.21g
Answer:
Explanation:
Since water has a chemical formula of H2O , there will be 2 moles of hydrogen in every mole of water. In one mole of water, there will exist approximately 6.02⋅1023 water molecules.
Molarity is expressed as the number of moles of solute per volume of the solution. For example, we are given a solution of 2M NaOH this describes a solution that has 2 moles of NaOH per 1 L volume of the solution. Acids and bases can be measured through the concentrations of H+ and OH- ions in units of molarity. Hope this helps.