i speak english . gracias!
Answer:
8.3
Explanation:
pH is the measure of the H+ or H30 (they r the same thing) ions in a solution. it is equal to -log[H+]. [H+]= Molar concentration of H+ ions.
Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>
1/15 is the correct answer I think
Hey there!:
V1 = 3.05 L
V2 = 3.00 L
P1 = 724 mmHg
P2 = to be calculated
T1 = 298 K
T2 = 273 K
Therefore:
P1*V1 / T1 = P2*V2 / T2
P2 = ( P1*V1 / T1 ) * T2 / V2
P2 = 724 * 3.05 * 273 / 298 * 3.00
P2 = 602838.6 / 894
P2 = 674.31 mmHg
1 atm ----------- 760 mmHg
atm ------------- 674.31 mHg
= 674.31 * 1 / 760
= 0.887 atm
Hope this helps!