Answer:
I don't know if this is right or not, but here's what I think.
There are 36 butterflies on each flower.
Step-by-step explanation:
<u>Question:</u>
For each 10 flowers, there are <u>36 butterflies resting on the flower</u> with the same number on each flower. How many butterflies are on one flower?
Answer:
(D) 
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Integration
Integration Rule [Fundamental Theorem of Calculus 2]: ![\displaystyle \frac{d}{dx}[\int\limits^x_a {f(t)} \, dt] = f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cint%5Climits%5Ex_a%20%7Bf%28t%29%7D%20%5C%2C%20dt%5D%20%3D%20f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Chain Rule:
![\displaystyle f'(x) = \frac{d}{dx} \bigg[ \int\limits^{x^3}_1 {\frac{1}{1 + ln(t)}} \, dt \bigg] \cdot \frac{d}{dx}[x^3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cint%5Climits%5E%7Bx%5E3%7D_1%20%7B%5Cfrac%7B1%7D%7B1%20%2B%20ln%28t%29%7D%7D%20%5C%2C%20dt%20%5Cbigg%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E3%5D)
- Integration Rule - Fundamental Theorem of Calculus 2:
![\displaystyle f'(x) = \frac{1}{1 + ln(x^3)} \cdot \frac{d}{dx}[x^3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B1%20%2B%20ln%28x%5E3%29%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E3%5D)
- Basic Power Rule:

- Simplify:

<u>Step 3: Evaluate</u>
- Substitute in <em>x</em> [Derivative]:

- Exponents:

- Multiply:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
Answer:
Thanks you
Step-by-step explanation:
Answer:
y=4x-1
Step-by-step explanation:
Remember the point slope form equation y-y1=m(x-x1) where m is the slope and the given point is (x1,y1)
y-7=4(x-2) . Plug in the numbers for the equation
y-7=4x-8 distributive property
y = 4x-1