1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
4 years ago
8

A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.0 m/s at ground level.

The engines then fire, and the rocket accelerates up- ward at 4.00 m/s2 until it reaches an altitude of 1 000 m. At that point, its engines fail and the rocket goes into free fall, with an acceleration of 29.80 m/s2. (a) For what time inter- val is the rocket in motion above the ground?
Physics
1 answer:
BARSIC [14]4 years ago
6 0

Answer:

There is an interval of 24.28s in which the rocket is above the ground.

Explanation:

y_{i}=0m

v_i=80\frac{m}{s}

a=4\frac{m}{s^2}

y_{e}=1000m

g=9.8\frac{m}{s^2}

From Kinematics, the position y as a function of time when the engine still works will be:

y(t)=v_it+\frac{1}{2}at^2

At what time the altitud will be y_{e}=1000m?

v_it+\frac{1}{2}at^2=y_{e} ⇒ \frac{1}{2}at^2+v_it-y_{e}=0

Using the quadratic formula: t_1=10s.

How much time does it take for the rocket to touch the ground? No the function of position is:

y(t)=y_{e}+v_et-\frac{1}{2}gt^2

Where our new initial position is y_{max}, the velocity when the engine breaks is v_e=v_i+at=120\frac{m}{s} and the only acceleration comes from gravity (which points down).

Now, when the rocket tounches the ground:

y_{e}+v_et-\frac{1}{2}gt^2=0

Again, using the quadratic ecuation:

t_2=24.49s

Now, the total time from the moment it takes off and the moment it tounches the ground will be:

t_T=t_1+t_2=34.49s.

You might be interested in
A sealed container filled with gas is heated. What happens?
Luda [366]

The internal pressure increases as the gas is heated

5 0
4 years ago
Read 2 more answers
A 126- kg astronaut (including space suit) acquires a speed of 2.70 m/s by pushing off with her legs from a 1800-kg space capsul
jeka94

The change in the speed of the space capsule will be -0.189 m/s.

The average force exerted by each on the other will be 567 N.

The kinetic energy of each after the push for the astronaut and the capsule are 459.27 J and 32.14 J.

<h3>Given:</h3>

Mass of the astronaut, m_a = 126 kg

Speed he acquires, v_{a}  = 2.70 m/s

Mass of the space capsule, m_{c} = 1800kg

The initial momentum of the astronaut-capsule system is zero due to rest.

P_f = m_av_a + m_cv_c

P_I = 0

m_av_a + m_cv_c = 0

v_c =\frac{- m_a v_a}{m_c}}\\\\

   = \frac{126* 2.70}{1800}

   = - 0.189 m/s

Therefore,

According, to the impulse-momentum theorem;

FΔt = ΔP

ΔP = m Δv

ΔP = 126×2.70

    = 340.2 kgm/sec

t is time interval = 0.600s

F = ΔP/Δt

F = 340.2/0.600

  = 567 N

Therefore, the average force exerted by each on the other will be 567 N.

The Kinetic Energy of the astronaut;

K.E = \frac{1}{2} m v^2

     = \frac{1}{2} × 126 × (2.70) ^2

     = 459.27 J

The Kinetic Energy of the capsule;

K.E = \frac{1}{2} m v^2

     = \frac{1}{2}×1800×(0.189) ^2

     = 32.14 J

Therefore, the kinetic energy of each after the push for the astronaut and the capsule are 459.27 J and 32.14 J.

Learn more about kinetic energy here:

brainly.com/question/26520543

#SPJ1

3 0
2 years ago
A +71 nC charge is positioned 1.9 m from a +42 nC charge. What is the magnitude of the electric field at the midpoint of these c
viva [34]

Answer:

The net Electric field at the mid point is 289.19 N/C

Given:

Q = + 71 nC = 71\times 10^{- 9} C

Q' = + 42 nC = 42\times 10^{- 9} C

Separation distance, d = 1.9 m

Solution:

To find the magnitude of electric field at the mid point,

Electric field at the mid-point due to charge Q is given by:

\vec{E} = \frac{Q}{4\pi\epsilon_{o}(\frac{d}{2})^{2}}

\vec{E} = \frac{71\times 10^{- 9}}{4\pi\8.85\times 10^{- 12}(\frac{1.9}{2})^{2}}

\vec{E} = 708.03 N/C

Now,

Electric field at the mid-point due to charge Q' is given by:

\vec{E'} = \frac{Q'}{4\pi\epsilon_{o}(\frac{d}{2})^{2}}

\vec{E'} = \frac{42\times 10^{- 9}}{4\pi\8.85\times 10^{- 12}(\frac{1.9}{2})^{2}}

\vec{E'} = 418.84 N/C

Now,

The net Electric field is given by:

\vec{E_{net}} = \vec{E} - \vec{E'}

\vec{E_{net}} = 708.03 - 418.84 = 289.19 N/C

5 0
3 years ago
Can a metallic sphere be charged without rubbing​
morpeh [17]
We need to charge a metal sphere positively without touching it. This can be achieved using electrostatic induction.
6 0
3 years ago
How do modern scientist describe the make up of matter
lbvjy [14]

The matter is a collection or composition of extremely small particles called "Atoms".

<u>Explanation</u>:

  • The matter is anything that has mass and which utilizes space by having volume.
  • Modern scientists describe the makeup of matter as a collection of tiny substances called atoms.
  • Matter can either be in solid, liquid, or gaseous state and even appear in plasma form.
  • Matter can neither be created nor be destroyed but only transferred from one form to the other.
  • Atoms are composed protons, neutrons and electrons. The protons and neutrons are contained in the nucleus, while the electrons orbit around the nucleus of the atom.
  • Protons are positively charged, neutrons are neutral and electrons are negative.
4 0
3 years ago
Other questions:
  • A small ball of mass 2.00 kilograms is moving at a velocity 1.50 meters/second. It hits a larger, stationary ball of mass 5.00 k
    6·1 answer
  • When you are in the way of a moving object and a collision is sure to occur, you are better off decreasing its momentum over …?
    5·1 answer
  • A bicycle slows down when the rider applies the brakes.
    5·2 answers
  • Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height h ab
    5·2 answers
  • If R1 is 2 ohms and R2 is 3 ohms and R3 is 5 ohms...what is total resistance?
    14·1 answer
  • Maria feels overwhelmed by everything she needs to do for school by next week. How can she best manage this stress?
    5·2 answers
  • What is the objective lens?
    11·1 answer
  • What does acceleration mean???
    13·2 answers
  • Throw a rock horizontally at 22 m/s from a 315 m tall building. How far from the base of the building will it land?​
    14·1 answer
  • The space station is 4.41 x 10^5 kg and orbits the earth 6.78 x 10^6 m from the center of earth. The mass of earth is 5.97 x 10^
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!